|
[1] G. M. Amdahl. Validity of the single processor approach to achieving large scale computing capabilities. Proceedings of the Spring Joint Computer Conference, pages 483–485, 1967. [2] P. A. Bosman and D. Thierens. Linkage neighbors, optimal mixing and forced im- provements in genetic algorithms. Proceedings of the Genetic and Evolutionary Computation Conference, pages 585–592, 2012. [3] R. de Bokx. Parallelizing the linkage tree genetic algorithm and searching for the optimal replacement for the linkage tree. Master thesis, Delft University of Technol- ogy, 2015. [4] T. S. Duque, D. E. Goldberg, and K. Sastry. Improving the efficiency of the ex- tended compact genetic algorithm. Proceedings of the Genetic and Evolutionary Computation Conference, pages 467–468, 2008. [5] R. A. Fisher and F. Yates. Statistical tables for biological, agricultural and medical research. Oliver & Boyd, London, 1938. [6] S.-H. Hsu and T.-L. Yu. Optimization by pairwise linkage detection, incremental linkage set, and restricted/back mixing: DSMGA-II. Proceedings of the Genetic and Evolutionary Computation Conference, pages 519–526, 2015. [7] P. Krömer, J. Platoš, V. Snášel, and A. Abraham. Many-threaded differential evolu- tion on the GPU. Proceedings of the Massively Parallel Evolutionary Computation on GPGPUs, pages 121–147, 2013. [8] S. Kullback and R. A. Leibler. On information and sufficiency. The Annals of Math- ematical Statistics, 22(1):79–86, 1951. [9] J.-M. Li, X.-J. Wang, R.-S. He, and Z.-X. Chi. An efficient fine-grained parallel genetic algorithm based on GPU-accelerated. International Federation for Infor- mation Processing International Conference on Network and Parallel Computing Workshops, pages 855–862, 2007. [10] L. Mussi, F. Daolio, and S. Cagnoni. Evaluation of parallel particle swarm optimiza- tion algorithms within the CUDA architecture. Information Sciences, 181(20):4642– 4657, 2011. [11] J. Ocenasek and M. Pelikan. Parallel mixed bayesian optimization algorithm: A scaleup analysis. Workshop Proceedings of the Genetic and Evolutionary Computa- tion Conference, 2004. [12] C. Patel. Different optimization strategies and performance evaluation of reduction on multicore CUDA architecture. International Journal of Engineering, 3(4):1567– 1570, 2014. [13] M. Pelikan and D. E. Goldberg. Hierarchical boa solves ising spin glasses and maxsat. Proceedings of the Genetic and Evolutionary Computation Conference, pages 1271–1282, 2003. [14] P. Pospichal, J. Jaros, and J. Schwarz. Parallel genetic algorithm on the CUDA architecture. Proceedings of the European Conference on the Applications of Evo- lutionary Computation, pages 442–451, 2010. [15] S.M.Poulding,J.P.Staunton,andN.J.Burles.Fullimplementationofanestimation of distribution algorithm on a GPU. Proceedings of the Genetic and Evolutionary Computation Conference 2011, GPUs for Genetic and Evolutionary Computation Competition, 2011. [16] J.-H.Seo,E.-S.Ko,andY.-H.Kim.PerformancecomparisonofGPUswithagenetic algorithm based on CUDA. Advanced Science and Technology Letters, 65:36–40, 2014. [17] C.-Y.ShaoandT.-L.Yu.SpeedingupmodelbuildingforECGAonCUDAplatform. Proceedings of the Genetic and Evolutionary Computation Conference, pages 1197– 1204, 2013. [18] D. L. Souza, G. D. Monteiro, T. C. Martins, V. A. Dmitriev, and O. N. Teixeira. Pso- gpu: accelerating particle swarm optimization in CUDA-based graphics processing units. Proceedings of the Genetic and Evolutionary Computation Conference, pages 837–838, 2011. [19] D. Thierens. The linkage tree genetic algorithm. Proceedings of the International Conference on Parallel Problem Solving from Nature, pages 264–273, 2010. [20] D. Thierens and P. A. Bosman. Optimal mixing evolutionary algorithms. Pro- ceedings of the Genetic and Evolutionary Computation Conference, pages 617–624, 2011. [21] T.-L. Yu, D. E. Goldberg, A. Yassine, and Y.-P. Chen. Genetic algorithm design in- spired by organizational theory: Pilot study of a dependency structure matrix driven genetic algorithm. Proceedings of the Genetic and Evolutionary Computation Con- ference, pages 1620–1621, 2003. [22] T.-L. Yu, K. Sastry, D. E. Goldberg, and M. Pelikan. Population sizing for entropy- based model building in discrete estimation of distribution algorithms. Proceedings of the Genetic and Evolutionary Computation Conference, pages 601–608, 2007. [23] A. L. Zobrist. A new hashing method with application for game playing. Interna- tional Congress and Convention Association journal, 13(2):69–73, 1970.
|