|
1.Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2016. CA Cancer J Clin, 2016. 66(1): p. 7-30. 2.Torre, L.A., et al., Global cancer statistics, 2012. CA Cancer J Clin, 2015. 65(2): p. 87-108. 3.Kolb, T.M., J. Lichy, and J.H. Newhouse, Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations. Radiology, 2002. 225(1): p. 165-75. 4.Sickles, E.A., R.A. Filly, and P.W. Callen, Benign breast lesions: ultrasound detection and diagnosis. Radiology, 1984. 151(2): p. 467-70. 5.Roubidoux, M.A., et al., Bilateral breast cancer: early detection with mammography. Radiology, 1995. 196(2): p. 427-31. 6.Wilson, T.E., M.A. Helvie, and D.A. August, Breast cancer in the elderly patient: early detection with mammography. Radiology, 1994. 190(1): p. 203-7. 7.Chang, R.-F., et al., Whole breast computer-aided screening using free-hand ultrasound. International Congress Series, 2005. 1281(Complete): p. 1075-1080. 8.Ikedo, Y., et al., Development of a fully automatic scheme for detection of masses in whole breast ultrasound images. Med Phys, 2007. 34(11): p. 4378-88. 9.Moon, W.K., et al., Comparative study of density analysis using automated whole breast ultrasound and MRI. Medical Physics, 2011. 38(1): p. 382-389. 10.Chang, R.F., et al., Rapid image stitching and computer-aided detection for multipass automated breast ultrasound. Med Phys, 2010. 37(5): p. 2063-73. 11.Lo, C.M., et al., Multi-Dimensional Tumor Detection in Automated Whole Breast Ultrasound Using Topographic Watershed. IEEE Transactions on Medical Imaging, 2014. 33(7): p. 1503-1511. 12.Moon, W.K., et al., Computer-aided tumor detection based on multi-scale blob detection algorithm in automated breast ultrasound images. IEEE Trans Med Imaging, 2013. 32(7): p. 1191-200. 13.Tan, T., et al., Computer-aided detection of cancer in automated 3-D breast ultrasound. IEEE Trans Med Imaging, 2013. 32(9): p. 1698-706. 14.Lecun, Y., et al., Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998. 86(11): p. 2278-2324. 15.Krizhevsky, A., I. Sutskever, and G.E. Hinton, ImageNet classification with deep convolutional neural networks, in Proceedings of the 25th International Conference on Neural Information Processing Systems. 2012, Curran Associates Inc.: Lake Tahoe, Nevada. p. 1097-1105. 16.de Vos, B., et al., ConvNet-Based Localization of Anatomical Structures in 3D Medical Images. IEEE Transactions on Medical Imaging, 2017. 17.Day, W.H. and H. Edelsbrunner, Efficient algorithms for agglomerative hierarchical clustering methods. Journal of classification, 1984. 1(1): p. 7-24. 18.Sibson, R., SLINK: an optimally efficient algorithm for the single-link cluster method. The computer journal, 1973. 16(1): p. 30-34. 19.Simonyan, K. and A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition. CoRR, 2014. abs/1409.1556. 20.He, K., et al., Deep Residual Learning for Image Recognition. CoRR, 2015. abs/1512.03385. 21.Srivastava, N., et al., Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 2014. 15(1): p. 1929-1958. 22.Nair, V. and G.E. Hinton. Rectified linear units improve restricted boltzmann machines. in Proceedings of the 27th international conference on machine learning (ICML-10). 2010. 23.Maas, A.L., A.Y. Hannun, and A.Y. Ng. Rectifier nonlinearities improve neural network acoustic models. in Proc. ICML. 2013. 24.Kingma, D. and J. Ba, Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014. 25.Chakraborty, D.P., Maximum likelihood analysis of free‐response receiver operating characteristic (FROC) data. Medical physics, 1989. 16(4): p. 561-568. 26.Chakraborty, D.P., et al., Digital and conventional chest imaging: a modified ROC study of observer performance using simulated nodules. Radiology, 1986. 158(1): p. 35-39. 27.Holm, S., A simple sequentially rejective multiple test procedure. Scandinavian journal of statistics, 1979: p. 65-70. 28.Hochreiter, S. and J. Schmidhuber, Long short-term memory. Neural computation, 1997. 9(8): p. 1735-1780. 29.Girshick, R. Fast r-cnn. in Proceedings of the IEEE international conference on computer vision. 2015. 30.Ren, S., et al. Faster R-CNN: Towards real-time object detection with region proposal networks. in Advances in neural information processing systems. 2015. 31.Girshick, R., et al. Rich feature hierarchies for accurate object detection and semantic segmentation. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2014. 32.Uijlings, J.R., et al., Selective search for object recognition. International journal of computer vision, 2013. 104(2): p. 154-171. 33.Long, J., E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015.
|