跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2025/01/26 04:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳維舜
研究生(外文):Wei-Shun Chen
論文名稱:表貼式永磁無刷直流馬達齒槽轉矩削弱與設計優化
論文名稱(外文):The Study for Reducing Cogging Torque and Design Optimization in Surface Mounted Brushless DC Permanent Magnet Motor
指導教授:劉志文劉志文引用關係
口試日期:2017-07-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:60
中文關鍵詞:無刷直流馬達齒槽轉矩有限元分析轉矩脈動
外文關鍵詞:BLDCMCogging torqueFinite Element AnalysisTorque ripple
相關次數:
  • 被引用被引用:0
  • 點閱點閱:615
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
無刷直流馬達時永磁式同步電機的一種,英文簡稱BLDCM。與有刷直流馬達的不同之處在於,無刷直流馬達可以不使用機械電刷裝置,以霍爾感測器去取代碳刷換向器,以釹鐵硼作為轉子的永磁體材料。其性能上相較比傳統直流馬達有很大優勢,比如:体积小、重量轻;中、低速轉矩性能好,啟動電流小;無級調速,調速範圍廣,超載能力強;效率高,馬達本身沒有勵磁損耗和碳刷損耗。所以說,無刷直流馬達是目前最理想的電機。雖然無刷直流馬達具有諸多優點,但仍存在一些影響其性能的問題,其中一種就是齒槽轉矩。由於電機本身的齒槽物理結構會不可避免的在馬達中產生一種轉矩,即是永磁電機繞組不通電時永磁體和定子鐵心之間相互作用產生的轉矩,這就是齒槽轉矩。齒槽轉矩會使馬達出現轉矩波動,導致振動和雜訊的產生,使馬達不能平穩運行,影響其的性能輸出。因此,本文核心為削弱齒槽轉矩。研究方法大致如下:
使用傅立葉分解推導和能量法得到的齒槽轉矩表達式為基礎,分析了馬達極數和槽數的配合、磁極的極弧係數、定子槽之槽口寬度等一些設計參數對馬達齒槽轉矩的影響。並且推導他們在馬達參數設計優化中的計算方法。同時,對通過優化磁極削弱齒槽矩的方法,如不等厚永磁體和磁極偏移的方法進行了研究。
最後先後運用極數和槽數的配合、極弧係數、槽口寬度、磁極偏移、偏心距以及磁極偏移的方法應用於一台電動車上使用的1200w無刷直流馬達。對齒槽轉矩以及其性能進行模擬實驗。通過對馬達空載時氣隙磁密跟反電動勢的分析,以及負載時輸出轉矩和馬達A相電流的研究,找到削弱本馬達齒槽轉矩的最優參數。
The brushless dc motor, or BLDCM, is one of the permanent magnet synchronous motors. The difference is that the brushless DC motor does not use mechanical brush device, it uses hall sensor to replace carbon brush and commutator rotor in NdFeB permanent magnet materials. It has prominent performance over the traditional DC motor. The advantages of BLDCM are as follows: small volume, light-weight; the low torque is good, and the starting current is small. Stepless speed adjustment, wide range of speed regulation, strong overload ability; High efficiency, no excitation loss and carbon brush loss in the motor itself. Therefore, brushless DC motor is the most ideal speed regulating motor nowadays. Although brushless dc motor has many advantages, it still has some problems affecting its performance. One of them is the cogging torque. Cogging torque of electrical motors is the torque due to the interaction between the permanent magnets of the rotor and the statorslots of a Permanent Magnet (PM) machine. It is also known as detent or ''no-current'' torque. This torque is position dependent and its periodicity per revolution depends on the number of magnetic poles and the number of teeth on the stator. Cogging torque might cause vibration and noise, being the reason why the motor cannot run smoothly, will affect its performance output. Therefore, the main idea of this paper is to reduce the cogging torque from the BLDCM. The research methods are as follows:
Through analytical methods, using Fourier decomposition derived expression of cogging torque and energy method, it finds a way to prove that how these parameter like pole number and slot number of the cater, permanent magnet pole arc and stator slot width can affect on cogging torque of the BLDCM. Moreover, it deduced the motor parameters optimization design method too. Meanwhile, the way to reduce cogging torque by optimizing the permanent magnet, such as unequal thickness of permanent magnets and magnetic pole shift method is mentioned.
Finally, several methods analysised in this paper are used in a 1200W brushless DC motor being applied to an electric vehicle. The computed cogging torque values and machine performance were compared with the experiment values of the machine. Based on the analysis of air gap the magnetic density and back EMF of the motor without load, and the study of the output torque and phase A current with the load, the optimal parameters to reduce cogging torque of the motor are found.
中文摘要 i
ABSTRACT ii
目錄 iv
圖目錄 vii
表目錄 xi
第一章 緒論 1
1-1 研究背景和動機 1
1-2 齒槽轉矩研究現狀 2
1-3 論文架構 4
第二章 無刷直流馬達與齒槽轉矩原理 5
2-1 無刷直流馬達基本原理 5
2-1-1 馬達結構 5
2-1-2 工作原理 7
2-2 齒槽轉矩原理與分析方法 12
2-2-1 產生原理 12
2-2-2 分析方法 15
2-3 馬達設計與磁場分析 19
2-3-1 無刷直流馬達設計流程 19
2-3-2 有限元分析法 21
第三章 無刷直流馬達參數與齒槽轉矩削弱 22
3-1 基於能量法的永磁電機齒槽轉矩削弱原理 22
3-2 理論推導 23
3-2-1 槽極配合 23
3-2-2 極弧係數 24
3-2-3 槽口寬度 24
3-2-4 不等厚永磁體 25
3-2-5 磁極偏移 26
第四章 優選參數綜合應用削弱齒槽轉矩 28
4-1 研究對象 28
4-2 有限元分析 31
4-3 削弱齒槽轉矩實驗 33
4-3-1 槽極配合 34
4-3-2 極弧係數 37
4-3-3 槽口寬度 41
4-3-4 不等厚永磁體 45
4-3-5 磁極偏移 49
4-3-6 實驗結果分析 54
第五章 結論與未來展望 55
5-1 實驗結論 55
5-2 未來展望 55
參考文獻 56
[1]J. F. Gierras, Permanent Magnet Motor Technology, 3rd Ed. New York: CRC Press, 1997.
[2]J. F. Gierras, “Analytical Approach to Cogging Torque Calculation of PM BrushlessMotors,” IEEE Trans. Ind. App., vol. 40, no. 5, pp.1310-1316, 2004
[3]Z. Q. Zhu and D. Howe, “Analytical Prediction of the Cogging Torquein Radialfield Permanent Magnet Brushless Motors,” IEEE Trans.Magn., vol. 28, no. 2, pp.1371-1374, 1992.
[4]G. H. Kang and J.Hur, “Analytical Prediction and Reduction of the Cogging Torque in Interior Permanent Magnet Motor,” IEEE International Conf. IEMDC, San Antonio, TX, USA, pp.1620-1624, 05 Dec.2005.
[5]C. Schlensok, M. H. Gracia and K. Hameyer, “Combined Numerical and Analytical Method for Geometry Optimization of a PM Motor,” IEEE Trans.Magn., vol. 42, no. 4, pp.1211-1214, 2006.
[6]R. P. Deodhar, D.A. Station and T. M. Jahns, et al. “Prediction of Cogging Torque using the Flux 2MMF Diagram Technique,” IEEE Trans. Ind. App., vol. 32, no. 3, pp.569-576, 1996.
[7]J. De La Ree and N. Boules, “Torque Production in Permanent Magnet Synchronous Motors,” IEEE Trans. Ind. App., vol. 25, no. 1, pp.107-112, 1989.
[8]T. Li and G. Slemon, “Reduction of Cogging Torque in Permanent Magnet Motors,” IEEE Trans.Magn., vol. 24, no. 6, pp.2901-2903, 1998.

[9]N. Bianchi and S.Bolognani, “Design Techniques for Reducing the Cogging Torque in Surface mounted PM Motors,” IEEE Trans.Magn., vol. 25, no. 5, pp.1259-1265, 2002.
[10]T. Ishikawa and G.R. Slemon, “A Method of Reducing Ripple Torque in Permanent Magnet Motors Without Skewing,” IEEE Trans.Magn., vol. 29, no. 2, pp.2028-2031, 1993.
[11]C. Studer, A. Keyhani and T. Sebastian, et al. “Study of Cogging Torque in Permanent Magnet Machines,” IEEE IAS. Annual Meeting, New Orleans, Louisiana, USA, pp.42-49, 1997.
[12]W. Z. Qian, S. K. Panda and J.X. Xu, “Torque Ripple Minimization in PM Synchronous Motors Using Iterative Learning Control,” IEEE Trans. Power Electron., vol. 19, no. 2, pp.272-279, 2004.
[13]V. Petrovic, R. Ortega and A.M. Stankovic, “Design and Implementation of an Adaptive Controller for Torque Ripple Minimization in PM SynchronousMotors,” IEEE Trans. Power Electron., vol. 15, no. 5, pp.871-880, 2000.
[14]王興華, 勵慶孚, 王曙鴻.『永磁無刷直流電機磁阻轉矩的解析計算方法』,
中國電機工程學報, vol. 22, no. 10, pp.104-108, 2002.
[15]楊玉波, 王秀和, 陳謝傑, 等.『基於不等槽口寬配合的永磁電動機齒槽轉矩削弱方法』,電工技術學報, vol. 20, no. 3, pp.40-44, 2005.
[16]王秀和. 永磁電機. 中國電力出版社,2011。
[17]S. M. Hwang, K. T. Kim and W. B. Jeong, et al. “ Comparison ofVibration Sources between Symmetric and Asymmetric HDD Spindle Motors with Rotor Eccentricity ,” IEEE Trans. Ind. App., vol. 37, no. 6, pp.1727-1731, 2001.
[18]B. Boukais and H.Zeroug, “Magnet Segmentation for Commutation Torque Ripple
Reduction in a Brushless DC Motor Drive,” IEEE Trans.Magn., vol. 46, no. 11, pp.3909-3919, 2010.
[19]R. Islam, I. Husain and A. Fardoun, et al, “ Permanent-Magnet Synchronous Motor
Magnet Designs With Skewing for Torque Ripple and Cogging Torque Reduction ,” IEEE Trans. Ind. Appl., vol. 45, no. 1, pp.1332-1340, 2009.
[20]J.H.Song and I. Choy, “ Commutation torque ripple reduction in brushless DC motor drives using a single DC current sensor.Power Electronics,” IEEE Trans. Power Electron., vol. 19, no. 2, pp.312-319, 2004
[21]A.M. El-Refaie, T.M. Jahns and D.W. Novotny, “ Analysis of Surface Permanent Magnet Machines with Fractional Slot Concentrated Windings,” IEEE Trans. Energy Convers., vol. 21, no. 1, pp.34-43, 2006
[22]路昌工業股份有限公司
(http://lutron-ind.weebly.com/2998621697.html)
[23]Yaskawa America
(https://www.yaskawa.com/about-us/media-center/industry-articles-display?articleId=2169971)
[24]2014英飞凌XMC 微控制器巡回研讨会
(http://cn.21ic.com/ebook_download/microsite/infineon/13.pdf)
[25]南普機電科技有限公司
(http://www.jsnpjd.com/products.aspx?category_id=101)


[26]A.M. El-Refaie, T.M. Jahns and D.W. Novotny, “ Analysis of Surface Permanent Magnet Machines with Fractional Slot Concentrated Windings,” IEEE Trans. Energy Convers., vol. 21, no. 1, pp.34-43, 2006
[27]D. Netter and J. Leveque, “PMSM Cogging Torque Reduction: Comparison between different shapes of magnet ,” IEEE Trans. Appl. Supercond., vol. 11, no. 1, pp.2248-2251, 2011
[28]R. Lateb and N.Takorabet, et al, “Effect of magnet segmentation on the cogging torque in surface-mounted permanent-magnet motors ,” IEEE Trans.Magn., vol. 42, no. 3, pp.442-445, 2006.
[29]Z.Q. Zhu, S. Ruangsinchaiwanich and D. Howe , “Synthesis of cogging-torque waveform from analysis of a single stator slot,” IEEE Trans. Ind. App., vol. 42,
no. 3, pp.650-657, 2006.
[30]D.H. Wang, X.H. Wang and D.W. Qiao, et al, “Reducing Cogging Torque in Surface Mounted Permanent-Magnet Motors by Nonuniformly Distributed Teeth Method,”
IEEE Trans.Magn., vol. 49, no. 9, pp.2231-2239, 2011.
[31]C. Breton and J. Bartolome, et al. “Influence of machine symmetry on reduction of cogging torque in permanent magnet brushless motors,” IEEE Trans.Magn., vol. 36, no. 5, pp.3819-3823, 2000.
[32]J . F. Gieras, “Analytical approach to cogging torque calculation of PM brushless
motors,” IEEE Trans. Ind. Appl., vol. 40, no. 5, pp.1310-1316, 2004.
[33]謝芳,黃守道,劉婷, 『內置式永磁電機齒槽轉矩的分析研究』, 微特電機, vol. 11, pp.11-14, 2009.

[34]何雲,『永磁電機內齒槽轉矩的研究』[華南理工大學碩士學位論文],廣州,華南理工大學, pp.41-42,2005
[35] A.M.EL-Refaie, “Fractional-Slot Concentrated-Windings Synchronous Permanent Magnet Machines: Opportunities and Challenges,” IEEE Trans. Ind. Electron., vol. 57, no. 1, pp.107-121, 2010.
[36]G. H. Jang and C. I. Lee, “Dual Winding Method of a BLDC Motor for Large Starting Torque and High Speed,” IEEE Trans.Magn., vol. 30, no. 2, pp.3922-3924, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊