跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/02 22:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:簡至謙
研究生(外文):Chih-Chien Chien
論文名稱:基於有標記點之立體影像以有限元素法模型模擬肝臟形變與切割
論文名稱(外文):Marker Based 3D Image Finite Element Model Simulation of Liver Deformation and Cutting
指導教授:陳永耀陳永耀引用關係
指導教授(外文):Yung-Yaw Chen
口試日期:2017-07-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:110
中文關鍵詞:有限元素法分析影像引導手術肝臟形變切割標記點對應特徵點偵測
外文關鍵詞:finite element analysisimage-guided surgeryliver deformation and resectionmarker registrationfeature matching
相關次數:
  • 被引用被引用:0
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在微創手術中,醫師只能以內視鏡提供的平面影像作為導引,配合手術前的電腦斷層掃瞄影像自行在腦中推斷肝臟中血管與腫瘤的位置分布情形,但肝臟在手術過程中會因醫師的翻動動作而產生形變,甚至是切割使肝臟外型產生變化,都會使對肝臟內部血管與腫瘤的位置的掌握更加困難。藉由模型模擬計算血管位置,醫師可以更直觀的掌握內部血管與腫瘤的分布,降低切到大血管或腫瘤的風險。
在本論文中,利用電腦斷層掃瞄影像建立具有生物力學特性的有限元素法模型模擬手術中肝臟因為變形與切割而造成的外型變化,藉由在肝臟表面放置標記點,並利用具深度資訊的內視鏡影像獲得手術中肝臟部分表面的影像,分析手術中(變形與切割後)及手術前(未變化)的肝臟表面標記點位移,同時利用演算法分析表面幾何特徵點差異來模擬肝臟外型變化,在有限元素法模擬計算後可以得到變形與切割後肝臟內部血管與腫瘤分布情形。我們利用模擬資料及體外豬肝實驗驗證形變計算並利用模擬資料驗證切割計算。
In minimally invasive surgery (MIS), surgeon reviews the CT scan images before surgery to know the position of vessels and tumors. During the surgery, the video stream from endoscopic camera is the only information of liver structure providing to surgeon. However, the preoperative information is not trustworthy because liver is deformed or even cut by different surgical procedures.
In this thesis, a finite element model is used to calculate the deformation and cutting of live during the surgery. Preoperative model is built from CT image, and intraoperative data is partial liver surface from RGB-D endoscopic camera. We use marker spread on the liver surface to register intraoperative data to preoperative model and compute the model structure change to simulate the surgical procedure. After finite element computation, the intraoperative vessels and tumor position is acquired. With the help of this internal structure computation system, surgeon can operate surgical instruments more efficiency and reduce the risk. Our approach is validated through simulation and ex vivo experiment for performance of deformation and simulation for performance of cutting.
誌謝……… i
ABSTRACT ii
中文摘要… iii
CONTENTS iv
LIST OF FIGUES vi
LIST OF TABLES xiii
Chapter 1 Introduction 1
1.1 Motivation and Problem Definition 2
1.2 Previous Work of the Computation of Non-Rigid Tissue Deformation and Cutting 5
1.3 Our Approach 7
1.4 Thesis Overview 10
Chapter 2 Finite Element Analysis Computation 11
2.1 Principle of Finite Element Analysis 12
2.2 Finite Element Analysis by Abaqus 15
Chapter 3 Computation on Non-rigid Tissue Deformation and Cutting 19
3.1 Computation on Non-Rigid Tissue Deformation 21
3.2 Computation on Non-Rigid Tissue Cutting 29
3.3 Summary 33
Chapter 4 Finite Element Model Based Internal Structure Computation 34
4.1 System Overview 36
4.2 Preoperative Model Construction 38
4.3 Intraoperative Data Acquirement 47
4.4 Surface Marker Registration 49
4.5 Feature Matching Method 53
4.6 Cutting and Deformation Computation 57
Chapter 5 Validation by Simulation 61
5.1 Simulation of Deformation 62
5.2 Simulation of Cutting 68
5.3 Discussions 83
Chapter 6 Liver Deformation Experiment 85
6.1 Experiment Setup 86
6.2 Result of Experiment 92
6.3 Discussions and Comparison 99
Chapter 7 Conclusions and Future Work 105
REFERENCES 108
[1]P. Dumpuri, L.W. Clements, B. M. Dawant31a, & M. I. Miga1a, "Model-updated image-guided liver surgery: preliminary results using intra-operative surface characterization," SPIE Medical Imaging (pp. 76251H-76251H). International Society for Optics and Photonics., 2010
[2]S. Suwelack,S. Röhl, S. Bodenstedt, D. Reichard, R. Dillmann, T. Santos, et al., "Physics‐based shape matching for intraoperative image guidance," Medical physics, pp.41(11), 2014.
[3]N. Bourdel, T. Nicolas, et al. "Augmented reality in gynecologic surgery: evaluation of potential benefits for myomectomy in an experimental uterine model." Surgical endoscopy, pp. 456-461, 2017.
[4]C. J. Paulus, N. Haouchine, S. H. Kong, R.V. Soares, D. Cazier, & S. Cotin, "Handling topological changes during elastic registration," International journal of computer assisted radiology and surgery, 12(3), pp. 461-470, 2017
[5]W. J. Hsu, "Finite Element Model-Based Simulation of Liver Deformation for Vessel Tracking," Master''s Thesis of Department of Electrical Engineering, National Taiwan University, 2015.
[6]P. A. Yushkevich, J. Piven, H. C. Hazlett, R. G. Smith, S. Ho, J. C. Gee, et al., "User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability," Neuroimage, vol. 31, pp. 1116-1128, 2006.
[7]Hibbitt, Karlsson, and Sorensen, ABAQUS/standard user''s Manual vol. 1: Hibbitt, Karlsson & Sorensen, 2001.
[8]L. Jeřábková, & T. Kuhlen, "Stable cutting of deformable objects in virtual environments using xfem," IEEE computer graphics and applications, 29(2), pp. 61-71, 2009.
[9]A. M. Britto, "Running ABAQUS 6.4," 2005.
[10]U. Meier, O. López, C. Monserrat, M. C. Juan, and M. Alcaniz, "Real-time deformable models for surgery simulation: a survey," Computer methods and programs in biomedicine, vol. 77, pp. 183-197, 2005.
[11]L. W. Clements, W. C. Chapman, B. M. Dawant, R. L. Galloway, & M. I. Miga, "Robust surface registration using salient anatomical features for image-guided liver surgery: algorithm and validation," Med Phys, 35(6):2528–2540, 2008.
[12]J. Wu, R. Westermann, & C. Dick, "A survey of physically based simulation of cuts in deformable bodies," Computer Graphics Forum, Vol. 34, No. 6, pp. 161-187, 2015.
[13]H. W. Nienhuys, & F. A. Stappen, "A surgery simulation supporting cuts and finite element deformation," Medical Image Computing and Computer-Assisted Intervention–MICCAI 2001, pp. 145-152, 2001.
[14]J. Barbič, & D. L. James, "Real-time subspace integration for St. Venant-Kirchhoff deformable models," ACM transactions on graphics (TOG), Vol. 24, No. 3, pp. 982-990, 2005.
[15]M. Kauer, V. Vuskovic, J. Dual, G. Székely, and M. Bajka, "Inverse finite element characterization of soft tissues," Medical Image Analysis, vol. 6, pp. 275-287, 2002.
[16]I. Peterlík, C. Duriez, and S. Cotin, "Modeling and real-time simulation of a vascularized liver tissue," Medical Image Computing and Computer-Assisted Intervention–MICCAI 2012, ed: Springer, pp. 50-57, 2012.
[17]S. Umale, S. Chatelin, N. Bourdet, C. Deck, M. Diana, P. Dhumane, et al., "Experimental in vitro mechanical characterization of porcine Glisson''s capsule and hepatic veins," Journal of biomechanics, vol. 44, pp. 1678-1683, 2011.
[18]H. Yamada and F. G. Evans, "Strength of biological materials," 1970.
[19]S. Bernhardt, S. A. Nicolau, V. Agnus, L. Soler, C. Doignon, & J. Marescaux, "Automatic localization of endoscope in intraoperative CT image: a simple approach to augmented reality guidance in laparoscopic surgery," Medical image analysis, vol 30, pp.130-143, 2016
[20]H. Bay, T. Tuytelaars, & L. Van Gool, "Surf: Speeded up robust features," Computer vision–ECCV 2006, 404-417, 2006.
[21]J. Knopp, M. Prasad, G. Willems, R. Timofte, & L. Van Gool, "Hough transform and 3D SURF for robust three dimensional classification," Computer vision–ECCV 2010, 589-602, 2010.
[22]G. Willems, T. Tuytelaars, & L. Van Gool, "An efficient dense and scale-invariant spatio-temporal interest point detector," Computer Vision–ECCV 2008, 650-663, 2008.
[23]R. B. Rusu, N. Blodow, & M Beetz, "Fast point feature histograms (FPFH) for 3D registration. In Robotics and Automation," ICRA''09. IEEE International Conference on, pp. 3212-3217, 2009..
[24]S. R. Abdel-Misih, & M. Bloomston, "Liver anatomy," Surgical Clinics of North America, 90(4), pp. 643-653, 2010.
[25]D. M. Cash, M. Miga, T. K. Sinha, R. L. Galloway, and W. C. Chapman, "Compensating for intraoperative soft-tissue deformations using incomplete surface data and finite elements," Medical Imaging, IEEE Transactions on, vol. 24, pp. 1479-1491, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top