跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/09 00:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊典諺
研究生(外文):Tien-Yen Yang
論文名稱:基於嵌入式控制器之微型相量量測器研究
論文名稱(外文):Study and Implementation of Micro PMU Using Embedded Controller
指導教授:劉志文劉志文引用關係
口試日期:2017-07-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:65
中文關鍵詞:DFT諧波微型相量量測器複數最小方差法SDFTGPSIEEE1588台灣廣域量測系統
外文關鍵詞:Discrete Fourier transform(DFT)harmonic pollutionphasor measurement unitcomplex-valued least squaresSmart Discrete Fourier Transform(SDFT)GPSIEEE1588T-WAMS
相關次數:
  • 被引用被引用:2
  • 點閱點閱:294
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著越來越多非線性負載存在於電力系統中,諧波和雜訊的干擾也隨之增加,因此在計算電力系統頻率與相量時,需要將這些雜訊濾除,現今有非常多頻率計算演算法被提出,其中DFT(Discrete Fourier Transform)計算頻率的演算法是一項強大的工具,可以用來精準地計算出電力系統中的頻率,但DFT在計算頻率與相量時仍會受到些許的雜訊干擾,為了解決這項問題,本論文採用高性能頻率(Frequency)/向量 (Angle)計算演算法- SDFT(Smart Discrete Fourier Transform),可提高頻率與相量計算的精準度,在SDFT演算法中考慮視窗點數,計算出複數最小方差值得出頻率與相量,以濾除雜訊,並在最後討論SDFT中的最佳視窗點數和精準度之間的關係,本文將SDFT應用在微型相量量測器(Micro Phasor Measurement Unit,μPMU)計算電力系統的頻率與相量,使其在有限的計算時間內精準計算出頻率與相量,討論不同演算法在微型相量量測器之實驗結果,在最後完成μPMU新功能,分別有以GPS時間戳和IEEE1588網路時間戳之雙時間同步功能、網路傳輸功能以及以μPMU為基礎之台灣廣域量測系統。
With the increasing use of nonlinear loads in power systems, the harmonic pollution and noise effect become more serious. Therefore, when detecting the frequency of the power system, it is necessary to filter out the noise. Many algorithms of frequency detection have been proposed and the Discrete Fourier Transform(DFT) algorithm is a powerful tool that can be used to accurately calculate the frequency in the power system. But DFT will still suffer a little noise effect. In order to solve this problem, this paper adopts the Smart Discrete Fourier Transform (SDFT). SDFT (Smart Discrete Fourier Transform) is used to improve the accuracy of the frequency detection. In the SDFT algorithm, the SDFT (Smart Discrete Fourier Transform) considering the number of window size to calculate the least square error, and calculate the frequency to solve the problem of noise effect. This paper will discuss the best number of window size to SDFT and the relationship between the precision and window size. This paper will apply SDFT algorithm in the Micro Phasor Measurement Unit (μPMU) to calculate the frequency of the power system and discusses the experimental results in the μPMU with different algorithms. In addition, the paper introduces the new function of μPMU, respectively, with GPS timestamp, IEEE1588 network timestamp and Taiwan-Wide Area Measurement System(T-WAMS) based on μPMU.
中文摘要 i
ABSTRACT ii
目錄 iii
圖目錄 v
表目錄 viii
第一章 緒論 1
1-1 研究背景及動機 1
1-2 研究目標 2
1-3 文獻回顧討論 2
1-4 論文架構 4
第二章 微型相量量測器與網路系統 5
2-1 硬體架構 5
2-2 軟體架構 9
2-3 核心演算法 Smart DFT 11
2-4 雙時間戳記來源 19
2-5 微型相量量測器傳輸模式與原理 23
2-6 台灣廣域量測系統(T-WAMS) 27

第三章 微型相量量測器實驗結果 28
3-1 時間同步-GPS 28
3-2 SDFT應用於微型相量量測 31
3-2-1 SDFT電腦模擬 31
3-2-2 SDFT在微型相量量測器之實驗結果呈現 35
3-2-3 最佳視窗點數與運算時間探討 43
3-3 回傳結果與數據傳輸 53
第四章 結論與未來工作 57
4-1 結論 57
4-2 未來工作 58
參考文獻 59
[1] A. G. Phadke, “Synchronized phasor measurements in power systems, ”IEEE Comput. Appl. Power, vol. 6, no. 2, pp. 10–15, Apr. 1993.
[2] F. Aminifar, M. F. Firuzabad, A. Safdarian, Alidavoudi, and M. Shahidehpour, “Synchrophasor Measurement Technology in Power Systems: Panorama and State-of-the-Art,” IEEE Access, vo. 2, no. 20, pp.1607-1628, Jan. 2015.
[3] A. G. Phadke, “Synchronized phasor measurements-a historical overview,” Transmission and Distribution Conf. and Exhibition, IEEE PES T&D, vol. 1, Yokohama, Japan, 6~10 Oct. 2002, pp.476-479.
[4] IEEE Standard for Synchrophasors for Power Systems, IEEE Standard C37.118-2005 (Revision of IEEE Std. 1344-1995).
[5] IEEE Standard for Synchrophasor Measurements for Power Systems, IEEE Standard C37.118.1-2011.
[6] IEEE Standard for Synchrophasor Measurements for Power Systems – Amendment 1: Modification of Selected Performance Requirements, IEEE Standard C37.118.1a-2014.
[7] C. C. Luo and C. W. Liu, “Design and Implementation of Dual Time Synchronization Signal for Micro Phasor Measurement Unit (µPMU),” IEEE International Instrumentation and Measurement Technology Conference Proceedings, I2MTC, Taipei, Taiwan, July 2016, pp.1-6.
[8] Z. Zhong, C. Xu, B. J. Billian, L. Zhang, S.-J.S. Tsai, R. W. Conners, V. A. Centeno, A. G. Phadke, and Y. Liu, “Power system frequency monitoring network (FNET) implementation,” IEEE Trans. Power Syst., vol. 20, no. 4, pp. 1914–1921, Nov. 2005.
[9] Y. Zhang, P. Markham, T. Xia, L. Chen, Y. Ye, Z. Wu, Z. Yuan, L. Wang, J. Bank, J. Burgett, R. W. Conners, and Y. Liu, “Wide-Area Frequency Monitoring Network (FNET) Architecture and Applications,” IEEE Trans. Smart Grid, vol. 1, no. 2, pp. 159-167, Sept. 2010.
[10] Q. Bin, L. Chen, V. Centeno, X. Z. Dong, and Y. Liu, “Internet Based Frequency Monitoring Network (FNET),” IEEE Power Eng. Soc. Winter Meet, vol.3, Columbus, OH, USA, USA, 28 Jan.~1 Feb. 2001, pp. 1166–1171.
[11] Y. Liu, “A US-Wide Power Systems Frequency Monitoring Network,” IEEE PES Power Systems Conf. and Exposition, PSCE, vol. 20, Atlanta, GA, USA, Nov. 2006, pp. 159-166.
[12] R. M. Gardener and Y. Liu, “FNET: A Quickly Deployable and Economic System to Monitor the Electric Grid,” in Proc. 2007 IEEE Conf. Technol. Homeland Security, HST, vol.20, Woburn, MA, USA, May 2007, pp. 209–214.
[13] 楊俊哲,『應用於電力系統相量及頻率量測之新型數位演算法』,國立台灣大學博士論文,1999.
[14] J. Z. Yang, C. S. Yu, and C. W. Liu, “A New Method for Power Signal Harmonic Analysis,” IEEE Trans. Power Delivery, vol. 20, no 2, pp.1235 – 1239, April 2005.
[15] J. Z. Yang and C. W. Liu, “A Precise Calculation of Power System Frequency” , IEEE Trans. Power Delivery, vol.16, no. 3, pp. 361-366, July 2001.
[16] J. Z. Yang and C. W. Liu, “A Precise Calculation of Power System Frequency and Phasor,” IEEE Trans. Power Delivery, vol. 15, no. 2, pp. 494-499, April 2000.
[18] A. Carta, et al. “GPS and IEEE 1588 synchronization for the measurement of synchrophasors in electric power systems, ” Computer Standards & Interfaces, vol. 33, lssue 2, pp. 176-181, February 2011.
[19] Q. Lijun, et al. “Feasibility study of PMU based on IEEE 1588,” International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, DRPT, Weihai, Shandong, China, July 2011,pp. 922-925.
[20] M. Lixia, IEEE 1588 synchronization in distributed measurement systems for electric power networks, 7th ed. Curriculum: ING-INF/07 Misure Elettriche ed Elettroniche , 2012.
[21] H. Weibel. (2009). Technology Update on IEEE 1588: The Second Edition of the High Precision Clock Synchronization Protocol [Online].Available FTP:http://www.in2p3.fr/actions/formation/Numerique12/PTPv2_eWorld_Luminary_v3.pdf .
[22] Introduction to Distributed Clock Synchronization and the IEEE 1588 Precision Time Protocol[Online].Available FTP: http://www.ni.com/tutorial/2822/en/
[23] IEEE Standard Profile for Use of IEEE 1588™ Precision Time Protocolin Power System Applications, IEEE Standard C37.238-2011.
[24] UDP (User Datagram Protocol)[Online].Available FTP: http://searchmicroservices.techtarget.com/definition/UDP-User-Datagram-Protocol.
[25] IEEE Standard for Synchrophasor Data Transfer for Power Systems, IEEE Standard C37.118.2-2011.
[26] G. Missout and P. Girard, “ Measurement of Bus Voltage Angle Between Montreal and SEPT-ILES,” IEEE Trans. Power App., vol. PAS-99, no. 2, pp. 536-539, March/April 1980.
[27] C. T. Nguyen and K. Srinivasan, “A New Technique for Rapid Tracking of Frequency Deviations Based on Level Crossings,” IEEE Trans. Power App. Syst., vol. PAS-103, no. 8, pp. 2230-2236, August 1984.
[28] M. S. Sachdev and M. M. Giray, “A Least Error Squares Technique for Determining Power System Frequency,” IEEE Trans. Power App. Syst., vol. PAS-104, no. 2, pp. 437-443, February 1985.
[29] M. M. Giray and M. S. Sachdev, “Off-nominal Frequency Measurements In Electric Power Systems”, IEEE Trans. Power Delivery, vol. 4, no. 3, pp.1573-1578, July 1989.
[30] M. S. Sachdev, H. C. Wood, and N. G. Johnson, “Kalman Filtering Applied to Power System Measurements for Relaying”, IEEE Trans. Power App. Syst., vol. PAS-104, no. 12, pp. 3565-3573, December 1985.
[31] M. M. Giray and M. S. Sachdev, “Instantaneous Phase Tracking In Power Networks by Demodulation,” IEEE Trans. Instrum. Meas., vol. 41, no. 6, pp. 963-967, December 1992.
[32] M. M. Begovic, P. M. Djuric, S. Dunlap, and A. G. Phadke, “Frequency Tracking In Power Networks In The Presence f Harmonics,” IEEE Trans. Power Delivery, vol. 8, no. 2, pp. 480-486, April 1993.
[33] A. G. Phadke, et al., “Synchronized Sampling and Phasor Measurements for Relaying and Control,” IEEE Trans. Power Delivery, vol. 9, no. 1, pp. 442-452, Jan. 1994.
[34] V. V. Terzija, M. B. Djuric, and B. D. Kovacevic, “Voltage Phasor and Local System Frequency Estimation Using Newton Type Algorithm,” IEEE Trans. Power Delivery, vol. 9, no. 3, pp. 1368-1374, July 1994.
[35] T. Lobos and J. Rezmer, “Real-Time Determination of Power System Frequency,” IEEE Trans. Instrum. Meas., vol. 46, no. 4, pp. 877-881, August 1997.
[36] A. G. Phadke, J. S. Thorp, and M. G. Adamiak, “A New Measurement Technique for Tracking Voltage Phasors, Local System Frequency, and Rate of Change of Frequency,” IEEE Trans. Power App. Syst., vol. PAS-102, no. 5, pp. 1025-1038, May 1983.
[37] A. Sridharan and V. Sarkar, “A Comparative Study On Phasor and Frequency Measurement Techniques in Power Systems,” National Power Systems Conf., NPSC , Bhubaneswar, India, Dec. 2016.
[38] D. Belega, D. Macii, and D. Petri, “Power System Frequency Estimation Accuracy of Improved DFT-based Algorithms over Short Intervals,” Applied Measurements for Power Systems, AMPS, Aachen, Germany, 28~30 Sept. 2016.
[39] Y. Xia, Y. He, K. Wang, W. Pei, Z. Blazic, and D. P. Mandic, “A Complex Least Squares Enhanced Smart DFT Technique for Power System Frequency Estimation,” IEEE Trans. Power Delivery, vol. 32, no. 3, pp. 1270-1278, June 2017.
[40] Y. Xia, K. Wang, W. Pei, Z. Blazic, and D. P. Mandic, “A Least Squares Enhanced Smart DFT Technique for Frequency Estimation of Unbalanced Three-Phase Power Systems,” 2016 International Joint Conf. on Neural Networks, IJCNN, Vancouver, BC, Canada, July 2016, pp.2762 – 2766.
[41] A. A. Girgis and F. M. Ham, “A Quantitative Study of Pitfalls in the FFT,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-16, Issue. 4, pp. 434-439, July 1980.
[42] Introduction to FPGA Technology [Online].Available FTP:http://www.ni.com/white-paper/6984/zht/
[43] 蘇文榮,GPS基礎原理與應用[Online].Available FTP:opencourse.ncyu.edu.tw/ncyu/mod/resource/view.php?id=2381
[44] What is a Real-Time Operating System (RTOS)?[Online].Available FTP:http://www.ni.com/white-paper/3938/en/
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top