跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/19 09:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李昇輯
研究生(外文):Sheng-Ji Li
論文名稱:飛行隨意網路電量消耗最佳化模式找尋的視覺化系統
論文名稱(外文):A Visualization System of Pattern Finding in FANET Power Consumption Optimization Problem
指導教授:郭斯彥郭斯彥引用關係
指導教授(外文):Sy-Yen Kuo
口試日期:2017-07-14
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:33
中文關鍵詞:移動感測器網路四軸飛行器飛行隨意網路視覺化D3.js
外文關鍵詞:MSNQuadcopterFANETVisualizationD3.js
相關次數:
  • 被引用被引用:0
  • 點閱點閱:219
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在學長的研究中,提出了一個如何利用飛行隨意網路的情境。這個情境包含一個以四軸飛行器為節點的飛行隨意網路和一些任務。學長的研究中提出了如何分配任務的演算法,一個是簡單的貪心法,一個是藉由比較周圍裝置資訊降低電量消耗的演算法。我們想要進一步延伸這個成果,觀察演算法的結果和裝置及任務是否存在模式。藉由收集許多次的實驗資訊,再藉由視覺化的技術來觀察我們想觀察的資訊。

當實驗結果的資料量大到無法藉由直接觀察得到有用的資訊時,我們必須要借用一些工具。視覺化技術就是其中一個能夠高效率處理大量資料的技術。

深入地理解問題,提出系統需求和資料模型後,我們設計了四種視圖,分別從時間、空間和能量的角度來分析這個問題,最後歸納出不同情形下裝置的飛行模式。
In the study of seniors, we put forward a scenario of how to use FANET. This scenario contains a UAV as a node for FANET and some missions. The study of the seniors suggests how to allocate the mission of the algorithm, one is a simple greedy method, and one is by comparing the surrounding device information to reduce the power consumption. We want to further extend this result, observe the results of the algorithm and find existence of the model between mission and device. By collecting a lot of experimental information, and then by visualization of technology to observe the information we want to observe.

When the amount of data in the experimental results is too large to be useful for direct observation, we must use some tools. Visualization technique is one of the technologies that can handle large amounts of data efficiently.

In order to understand the problem and put forward the system requirements and data model, we design four kinds of views, from the perspective of time, space and energy to analyze the problem, and finally summed up the different circumstances of the device flight mode.
中文摘要 1
ABSTRACT 2
TABLE OF CONTENTS 3
LIST OF FIGURES 4
Chapter 1 Introduction 5
Chapter 2 Related Work 7
2.1 Systematic Design [1] 7
2.2 Mobile-Friendly Data Visualization [2] 8
Chapter 3 The FANET Architecture 9
Chapter 4 System Design 12
4.1 Tools Choosing [8] 12
4.2 Description of Data 14
4.3 System Architecture 16
Chapter 5 Visualization Design 18
5.1 Map View 19
5.2 Gantt View 21
5.3 Power View 22
5.4 Detail View 24
Chapter 6 Result and Case Study 26
6.1 Case I. Comparison between Base Line and Proposed Algorithm 26
6.2 Case II. Comparison between Different device parameters 28
Chapter 7 Conclusion 31
REFERENCE 32
[1]Zuchao Wang, Min Lu, Xiaoru Yuan, “Visual Traffic Jam Analysis Based on Trajectory Data”, IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. 12, DECEMBER 2013
[2]Li-Jung Chi, Chi-Hsuan Huang, Kun-Ta Chuang, “Mobile-Friendly and Streaming Web-based Data Visualization” in Technologies and Applications of Artificial Intelligence TAAI’16, Hsinchu, Taiwan 25-27 Nov. 2016
[3]Ilker Bekmezci, Ismail Sen, Ercan Erkalkan, “Flying ad hoc networks (FANET) test bed implementation”, IEEE International Conference on Recent Advances in Space Technologies RAST’ 15, Istanbul, Turkey 16-19 June 2015
[4]Shamal Al-Dohuki, Yingyu Wu, Farah Kamw, “SemanticTraj: A New Approach to Interacting with Massive Taxi Trajectories”, IEEE Transactions on Visualization and Computer Graphics, Vol 23 Issue 1, August 2016
[5]Nivan Ferreira, Jorge Poco, Huy T. Vo, “Visual Exploration of Big Spatio-Temporal Urban Data: A Study of New York City Taxi Trips”, IEEE Transactions on Visualization and Computer Graphics, Vol 19 Issue 12, October 2013
[6]Nesrine Mahdoui, Enrico Natalizio, Vincent Fremont, “Multi-UAVs network communication study for distributed visual simultaneous localization and mapping”, International Conference on Computing, Networking and Communications ICNC’ 16, Kauai, HI, USA, 24 March 2016
[7]Juergen Eckert, David Eckhoft, Reinhard German, “Flying Ad-Hoc Network communication for detecting thermals: Feasibility and insights”, Innovative Computing Technology INTECH’ 13, London, UK, 04 November 2013
[8]M. Tory, T. Moller, “Human factors in visualization research”, IEEE Transactions on Visualization and Computer Graphics, Col 10 Issue 1, June 2004
[9]Shusen Liu, Dan Maljovec, Bei Wang, “Visualizing High-Dimensional Data: Advances in the Past Decade”, IEEE Transactions on Visualization and Computer Graphics, Vol 23 Issue 3, December 2016
[10]Michael Bostock, Vadim Ogievetsky, Jeffrey Heer, “D³ Data-Driven Documents”, IEEE Transactions on Visualization and Computer Graphics, Vol 17 Issue 12, November 2011
[11]M. H. Tareque, M. S. Hossain, and M. Atiquzzaman, “On the routing in flying ad hoc networks,” 2015 Federated Conference on Computer Science and Information Systems (FedCSIS), vol. 5, 2015.
[12]ilker Bekmezci, O. K. Sahingoz, and S. Temel, “Flying ad-hoc networks (fanets): A survey,” Ad Hoc Networks, Elsevier, vol. 5, 2013.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top