(3.237.97.64) 您好!臺灣時間:2021/03/04 14:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許育淇
研究生(外文):Yu-Chi Chu
論文名稱:群眾感知系統和伺服器為主激勵機制
論文名稱(外文):Crowdsensing System with Server-Centric Incentive Mechanism
指導教授:陳和麟
指導教授(外文):Ho-Lin Chen
口試日期:2017-07-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:33
中文關鍵詞:賽局理論群眾感知激勵機制斯塔克爾伯格均衡
外文關鍵詞:Game TheoryCrowdsensingIncentive MechanismStackelberg equilibrium
相關次數:
  • 被引用被引用:0
  • 點閱點閱:725
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
群眾感知是一種利用無處不在的智能手機來收集人類活動和周邊環境的方法。在群眾感知系統裡,感測任務中的大量用戶藉由他們的行動裝置來收集資料並將資料傳送給資料收集伺服器。系統的性能大部分取決於大眾的參與,因此,激勵機制在群眾感知系統裡是非常重要的。在此篇論文裡,我們著重於伺服器為主的激勵機制設計。我們設計四種使用斯塔克爾伯格模型的激勵機制,其中伺服器是領主導者,使用者們是跟隨者。我們研究兩種獎勵方式,第一種是先前論文提到的:總和固定的獎勵,第二種是總獎勵與所花費的時間或收集的信息成比例。而獎勵分配的方式是依據使用者所花的時間或是所收集到的資訊量來按比例分配。我們先假設使用者收集資料的能力是一樣的,但資源的價值對每個使用者來說或許是不同的。基於以上的獎勵和獎勵分配方式我們有TR-T, TR-Q, DR-T, DR-Q 四種模型。我們研究同異質使用者的情況。在同質使用者的情況中,我們在TR-T, TR-Q, DR-Q模型裡證明了純策略斯塔克爾伯格均衡的存在和唯一性。在異質使用者的情況中,TR-T 和DR-Q 模型有唯一的斯塔克爾伯格均衡。最後我們使用PoA和PoS來分析整個系統的效能。除了少數在TR-T, TR-Q的情況,PoA的結果可以被常數界定。
Crowdsensing is an approach to collect human activities and surrounding environment which takes the benefit of the pervasive smartphones and their powerful sensors. In a crowdsensing system, a large number of users in the sensing tasks collect and send data through their mobile devices to a data collection server. The performance of the system heavily depends on the crowd participation. Thus, incentive mechanisms are important in crowdsensing.
We focus on the server-centric model, in which the server has more control over the payment. We design four incentive mechanisms using Stackelberg game, where the server is the leader while the users are the followers. We study the original scenario in which the total reward is fixed and a different scenario in which the total reward is proportional to the effort spent or information collected. The reward is distributed to the users in proportion to either the amount of time spent or quantity of information. We assume that the ability of information collect is the same for all users, but the value of resources may be different. Based on the above reward models and distribution methods, we formulate four different models called TR-T, TR-Q, DR-T, DR-Q models respectively. We study the cases with homogeneous and heterogeneous users. For homogeneous users, we can prove the existence and uniqueness of pure strategy Stackelberg equilibrium in TR-T, TR-Q, DR-Q models. For heterogeneous users, there is a unique Stackelberg equilibrium in TR-T and DR-Q models. We compute the efficiency which measured by PoA and PoS for homogeneous models and DR-Q model with heterogeneous users. The PoA is bounded by a constant except for some special cases in TR-T and TR-Q models.
摘要 v
Abstract vii

1 Introduction 1

2 Model 5
2.1 Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Social Welfare and PoA . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Homogeneous Users 9
3.1 TR-T Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 TR-Q Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 DR-T Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 DR-Q Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4 Heterogeneous Users 21
4.1 TR-T Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 TR-Q Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 DR-T Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 DR-Q Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5 Discussion and Future Work 27
5.1 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Irrational Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Bibliography 31
[1] E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos, T. Wexler, and T. Roughgarden. The price of stability for network design with fair cost allocation. In Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, pages 295–304, Oct 2004.
[2] A. K. Chorppath and T. Alpcan. Trading privacy with incentives in mobile commerce: A game theoretic approach. Pervasive and Mobile Computing, 9(4):598 –612, 2013.
[3] G. Danezis, S. Lewis, and R. Anderson. How much is location privacy worth. In Proceedings of the Workshop on the Economics of Information Security Series (WEIS), 2005.
[4] R. K. Ganti, F. Ye, and H. Lei. Mobile crowdsensing: current state and future challenges. IEEE Communications Magazine, 49(11):32–39, 2011.
[5] R. Kawajiri, M. Shimosaka, and H. Kashima. Steered crowdsensing: Incentive design towards quality-oriented place-centric crowdsensing. In Proceedings of ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp’14, pages 691–701, 2014.
[6] S. Kim, C. Robson, T. Zimmerman, J. Pierce, and E. M. Haber. Creek watch: Pairing usefulness and usability for successful citizen science. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’11, pages 2125–2134,2011.
[7] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T. Campbell. A survey of mobile phone sensing. IEEE Communications Magazine, 48(9):140–150, Sept. 2010.
[8] J. S. Lee and B. Hoh. Sell your experiences: a market mechanism based incentive for participatory sensing. In Proceedings of IEEE International Conference on Pervasive Computing and Communications (PerCom), pages 60–68, March 2010.
[9] Y. Li, C. A. Courcoubetis, and L. Duan. Dynamic routing for social information sharing. IEEE Journal on Selected Areas in Communications, 35(3):571–585, 2017.
[10] J. R. Marden and M. Philips. Optimizing the price of anarchy in concave cost sharing games. In Proceedings of American Control Conference (ACC), pages 5237–5242,May 2017.
[11] P. Mohan, V. N. Padmanabhan, and R. Ramjee. Nericell: Rich monitoring of road and traffic conditions using mobile smartphones. In Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems, SenSys ’08, pages 323–336, 2008.
[12] NoiseTube. http://www.noisetube.net.
[13] D. Peng, F. Wu, and G. Chen. Pay as how well you do: A quality based incentive mechanism for crowdsensing. In Proceedings of the 16th ACM International Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc ’15, pages 177–186, 2015.
[14] R. K. Rana, C. T. Chou, S. S. Kanhere, N. Bulusu, and W. Hu. Ear-phone: An end-to-end participatory urban noise mapping system. In Proceedings of the 9th ACM/IEEE International Conference on Information Processing in Sensor Networks, IPSN ’10, pages 105–116, 2010.
[15] T. Roughgarden. Routing games. Algorithmic game theory, 18:459–484, 2007.
[16] T. Roughgarden and E. Tardos. How bad is selfish routing? J. ACM, 49(2):236–259, Mar. 2002.
[17] Sensorly. http://www.sensorly.com.
[18] H. von Stackelberg. Market Structure and Equilibrium. Springer, 1934.
[19] T. Yan, V. Kumar, and D. Ganesan. Crowdsearch: Exploiting crowds for accurate real-time image search on mobile phones. In Proceedings of the 8th International Conference on Mobile Systems, Applications, and Services, MobiSys ’10, pages 77–90, 2010.
[20] D. Yang, G. Xue, X. Fang, and J. Tang. Incentive mechanisms for crowdsensing: Crowdsourcing with smartphones. IEEE/ACM Trans. Netw., 24(3):1732–1744, June 2016.
[21] G. Yang, S. He, Z. Shi, and J. Chen. Promoting cooperation by the social incentive mechanism in mobile crowdsensing. IEEE Communications Magazine, 55(3):86–92, March 2017.
[22] D. Zhao, X. yang Li, and H. Ma. How to crowdsource tasks truthfully without sacrificing utility: online incentive mechanisms with budget constraint. In Proceedings of IEEE Conference on Computer Communications, pages 1213–1221, 2014.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔