(3.231.29.122) 您好!臺灣時間:2021/02/25 22:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蕭慈堃
研究生(外文):Tzu-Kun Hsiao
論文名稱:化學與材料科學領域高被引作者之被引來源多樣性分析
論文名稱(外文):Diversity of Forward Citation of Highly Cited Researchers in the Field of Chemistry and Materials Science
指導教授:黃慕萱黃慕萱引用關係
口試日期:2017-07-05
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:圖書資訊學研究所
學門:傳播學門
學類:圖書資訊檔案學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:191
中文關鍵詞:書目計量學高被引作者被引來源被引來源多樣性
外文關鍵詞:BibliometricsHighly-Cited ResearcherDiversity of Forward Citation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究以書目計量法分析化學、材料科學兩領域高被引作者於2006-2016年間著有之高被引文章,以及這些文章的被引來源,以瞭解兩領域高被引作者之基本特性,以及高被引文章的觸及範圍。本研究將被引來源分為個人、機構、國家、學科領域四個分析層級,先就兩領域高被引作者之被引來源數進行分析,以瞭解兩領域高被引作者之高被引文章被多少不同的個人、機構、國家、學科領域引用,剖析高被引作者之高被引文章在學術社群中的實際觸及範圍。其次透過被引來源多樣性之分析,探究這些高被引文章被各相異之被引來源引用的平均程度。最後就被引來源數、被引來源多樣性與被引次數、平均被引次數、h-index進行相關驗證,以瞭解被引來源數、被引來源多樣性與科學影響力之間的關係。
研究結果顯示兩領域高被引作者合著活躍。化學領域有82.79%、材料科學領域有92.76%的高被引作者之合著率為100%。在著作質量方面,兩領域皆有質量兼具之產出,其中化學領域有逾九成、材料領域有逾七成的高被引作者平均一年至少著有一篇高被引文章,且所有作者皆被引用超過1,000次以上。此外,兩領域高被引作者之高被引文章有明顯的期刊集中特性,化學領域有84.41%、材料科學領域有95.87%的文章集中刊登於20本期刊。在地理分布特性方面,發現有集中分布於美國、中國的現象,但機構並無集中的狀況。
在兩領域高被引作者之高被引文章的被引來源方面,發現於個人、機構、國家、學科領域四個層級之被引來源數皆有傑出表現,表示高被引作者確實有廣泛的觸及範圍。然透過被引來源多樣性之分析結果發現,被引來源數越多者,其被引來源多樣性之表現不一定較佳。在機構、國家、學科領域之來源多樣性前20的高被引作者中,依分析層級不同,各有5-15位高被引作者之被引來源數亦能排在前20;個人來源多樣性與個人來源數排名前20的作者則無重複的情況。而兩領域整體高被引作者之被引來源數與被引來源多樣性之相關檢定結果亦皆發現,只在機構、國家、學科領域三個層級上兩者間有達到中度以上正相關。是故被引來源多樣性確實能反映出高被引作者不同的被引特性,被引來源數越多的高被引作者並不一定能平均的被各個來源所引用。
在被引來源數、被引來源多樣性與科學影響力間之關係方面,本研究首先觀察被引次數、平均被引次數前20之作者的表現,發現其被引來源數之表現優於被引來源多樣性,各有近半數或過半數之高被引作者之被引來源數亦排名於前20,然僅有機構來源多樣性表現能大致持平,個人、國家、學科領域之來源多樣性表現皆有明顯率退。在兩領域高被引作者整體表現方面,結果顯示四層級之被引來源數與被引次數、平均被引次數皆為正相關,然被引來源多樣性僅在機構層級與被引次數、平均被引次數、h-index呈現正相關。表示被引來源數可作為被引次數、平均被引次數的輔助指標,用以顯示高被引作者之實際觸及範圍,而被引來源多樣性的確能衡量到與被引、平均被引次數不同面向的科學影響力。
The aim of the study is to analyze the diversity of forward citation of highly cited researchers in the field of Chemistry and Material Science, and the relation between the diversity of forward citation and the scienfic impact. The diversity of forward citation can be analyzed form two aspects, which are the number of unique citation sources and the eveness of citation distribution among different soureces.
The list of the highly cited researchers of the two fields are collected from the 2016 Highly Cited Researchers published by Thomson Reuters. The highly cited papers of these researchers published during 2006-2016 are chosen as the subjects of the study. The bibliographic data of the highly cited papers and the citing papers of these highly cited papers are downloaded from Web of Science. The diversity of forward citation of highly cited researchers are discussed in four levels, which are individual, institution, country and subject fields. Through calculating the number of different individuals, institutions, countries and subject fields within the total citation counts, the range of knowledge diffusion of each highly cited researchers can be revealed. In addition, the eveness of citation distribution among each source is measured as well.
The results show that the highly cited researchers do have a broad range of influences reflected by their number of unique citation sources across the four levels of analyses. However, the results also show that the corresponding performances between the number of unique citation sources and the eveness of citation distribution are not guaranteed. The correlations are only found significant in the level of institution, country and subject fields.
As for the relations between the number of unique sources and eveness of citation distribution, and scientific impact, the performance of the top 20 authors with the highest citation counts and average citation counts, and the entire highly cited researchers of the two fields are discussed. We find that among the top 20 authors, they have better performance in number of unique soureces than the eveness of citation distribution. The analyses of the entire highly cited researchers of the two fields show consistent results. The siginificant correlations between the citation counts and average citation counts, and the number of unique soureces are found across the four levels, while considering the eveness of citation distribution, the siginificant correlation is only found in the institutional level.
摘要 i
目次 v
表目次 vii
圖目次 x
第一章 緒論 1
第一節 問題陳述 1
第二節 研究目的 7
第三節 研究範圍與限制 8
第四節 名詞解釋 9
第二章 文獻探討 11
第一節 作者科學影響力 11
第二節 高被引作者 23
第三節 引用與被引來源多樣性 31
第四節 領域學術生態 40
第三章 研究設計與實施 46
第一節 研究方法與研究對象 46
第二節 研究工具與指標 49
第三節 研究步驟與流程 52
第四節 資料處理與分析 54
第四章 研究結果 57
第一節 高被引作者基本特性 57
第二節 化學領域高被引作者之被引來源多樣性 95
第三節 材料科學領域高被引作者之被引來源多樣性 114
第四節 被引前端之高被引作者之被引來源多樣性 133
第五節 被引來源數及多樣性與科學影響力之關係 154
第五章 結論與建議 165
第一節 結論 165
第二節 建議 176
第三節 進一步研究之建議 179
附錄 181
附錄一 ESI學科領域名稱中英對照表 181
參考文獻 182
黃慕萱(1994)。引用文獻初探。載於王振鵠教授七秩榮慶祝壽文章集編輯小組,當代圖書館事業論集─慶祝王振鵠教授七秩榮慶文章集(807-816頁)。臺北市:正中書局。
張曉陽、金碧輝(2007)。高被引科學家h指數成長性探討──以分子生物學與遺傳學領域為例。科學學研究,25(3),407-414。
劉俊婉(2011)。高被引科學家人才流動的計量分析。科學學研究,29(2),192-197。
劉俊婉(2013)。高被引科學家文章產出力的計量分析。情報雜誌,32(10),67-71。
Ajiferuke, I., & Wolfram, D. (2009). Citer analysis as a measure of research impact: Library and information science as a case study. Scientometrics, 83(3), 623–638.
Amsterdamska, O., & Leydesdorff, L. (1989). Citations: Indicators of significance? Scientometrics, 15(5-6), 449–471.
Anderson, R. C., Narin, F., & McAllister, P. (1978). Publication ratings versus peer ratings of universities. Journal of the American Society for Information Science, 29(2), 91–103.
Antonakis, J., & Lalive, R. (2008). Quantifying scholarly impact: IQp versus the Hirsch h. Journal of the American Society for Information Science and Technology, 59(6), 956–969.
Appio, F. P., Cesaroni, F., & Di Minin, A. (2014). Visualizing the structure and bridges of the intellectual property management and strategy literature: a document co-citation analysis. Scientometrics, 101(1), 623–661.
Balaban, A. T., & Klein, D. J. (2006). Is chemistry’The Central Science’? How are different sciences related? Co-citations, reductionism, emergence, and posets. Scientometrics, 69(3), 615–637.
Bartneck, C., & Kokkelmans, S. (2011). Detecting h-index manipulation through self-citation analysis. Scientometrics, 87(1), 85–98.
Basu, A. (2006). Using ISI’s’ Highly Cited Researchers’ to obtain a country level indicator of citation excellence. Scientometrics, 68(3), 361–375.
Batista, P. D., Campiteli, M. G., & Kinouchi, O. (2006). Is it possible to compare researchers with different scientific interests? Scientometrics, 68(1), 179–189.
Batty, M. (2003a). Citation geography: It’s about location. The Scientist, 17(16), 10–12.
Batty, M. (2003b). The geography of scientific citation. Environment and Planning, 35(5), 761–765.
Bettencourt, L. A., & Houston, M. B. (2001). The impact of article method type and subject area on article citations and reference diversity in JM, JMR, and JCR. Marketing Letters, 12(4), 327–340.
Bonnevie-Nebelong, E. (2006). Methods for journal evaluation: journal citation identity, journal citation image and internationalization. Scientometrics, 66(2), 411–424.
Bornmann, L., & Daniel, H. (2008). What do citation counts measure? A review of studies on citing behavior. Journal of Documentation, 64(1), 45–80.
Bornmann, L., & Marx, W. (2014). How to evaluate individual researchers working in the natural and life sciences meaningfully? A proposal of methods based on percentiles of citations. Scientometrics, 98(1), 487–509.
Boyack, K. W., Börner, K., & Klavans, R. (2009). Mapping the structure and evolution of chemistry research. Scientometrics, 79(1), 45–60.
Braun, T., Glänzel, W., & Schubert, A. (1987). One more version of the facts and figures on publication output and relative citation impact in the life sciences and chemistry 1978–1980. Scientometrics, 11(3-4), 127–140.
Braun, T., Glänzel, W., & Schubert, A. (1988). The newest version of the facts and figures on publication output and relative citation impact in the life sciences and chemistry 1981–1985. Scientometrics, 14(1-2), 3–15.
Brown, R. J. (2009). A simple method for excluding self-citation from the h-index: the b-index. Online Information Review, 33(6), 1129–1136.
Brown, T. E., LeMay, H. E. H., Bursten, B. E., & Murphy, C. (2014). Chemistry the Central Science 13th Edition. Prentice Hall.
Carley, S., & Porter, A. L. (2012). A forward diversity index. Scientometrics, 90(2), 407–427.
Charlton, B. G., & Andras, P. (2008). “Down-shifting” among top UK scientists? –The decline of “revolutionary science”and the rise of “normal science”in the UK compared with the USA. Medical Hypotheses, 70(3), 465–472.
Chung, Y.-K. (1994). Bradford distribution and core authors in classification systems literature. Scientometrics, 29(2), 253–269.
Cohn, E. G., & Farrington, D. P. (1998). Changes in the most-cited scholars in major American criminology and criminal justice journals between 1986–1990 and 1991–1995. Journal of Criminal Justice, 26(2), 99–116.
Cole, S., & Cole, J. R. (1972). The Ortega Hypothesis: Citation analysis suggests that only a few scientists contribute to scientific progress. Science, 178(4059), 368–375.
Cole, S., & Cole, J. R. (1967). Scientific Output and Recognition: A Study in the Operation of the Reward System in Science. American Sociological Review, 32(3), 377–390.
Cote, J. A., Leong, S. M., & Cote, J. (1991). Assessing the influence of Journal of Consumer Research: A citation analysis. Journal of Consumer Research, 402–410.
Cronin, B., & Overfelt, K. (1994). Citation-based auditing of academic performance. Journal of the American Society for Information Science, 45(2), 61–72.
Cronin, B., & Shaw, D. (2002). Identity-creators and image-makers: Using citation analysis and thick description to put authors in their place. Scientometrics, 54(1), 31–49.
Cronin, B., Snyder, H., & Atkins, H. (1997). Comparative citation rankings of authors in monographic and journal literature: A study of sociology. Journal of Documentation, 53(3), 263–273.
Ding, Y. (2011). Applying weighted PageRank to author citation networks. Journal of the American Society for Information Science and Technology, 62(2), 236–245.
Ding, Y., & Cronin, B. (2011). Popular and/or prestigious? Measures of scholarly esteem. Information Processing & Management, 47(1), 80–96.
Diodato, V. P. (1994). Dictionary of bibliometrics. New York: Haworth Press.
Dorta-González, P., Dorta-González, M. I., & Suárez-Vega, R. (2014). An approach to the author citation potential: measures of scientific performance which are invariant across scientific fields. Scientometrics, 1–30.
Egghe, L. (2006a). An improvement of the h-index: The g-index. ISSI Newsletter, 2(1), 8–9.
Egghe, L. (2006b). Theory and practise of the g-index. Scientometrics, 69(1), 131–152.
Egghe, L. (2010). The Hirsch index and related impact measures. Annual Review of Information Science and Technology, 44(1), 65–114.
Encyclopedia Britannica. (2015). chemistry. Retrieved August 3, 2015, from http://global.britannica.com/science/chemistry
Evans, J. A. (2008). Electronic publication and the narrowing of science and scholarship. Science, 321(5887), 395–399.
Ferrara, E., & Romero, A. E. (2013). Scientific impact evaluation and the effect of self-citations: Mitigating the bias by discounting the h-index. Journal of the American Society for Information Science and Technology, 64(11), 2332–2339.
Fiala, D., Rousselot, F., & Ježek, K. (2008). PageRank for bibliographic networks. Scientometrics, 76(1), 135–158.
Fiala, D., Šubelj, L., Žitnik, S., & Bajec, M. (2015). Do PageRank-based author rankings outperform simple citation counts? Journal of Informetrics, 9(2), 334–348.
Garfield, E. (1963). Citation indexes in sociological and historical research. American Documentation, 14(4), 289–291.
Garfield, E. (1970). Citation indexing for studying science. Nature, 227, 669–671.
Garfield, E. (1972). Citation analysis as a tool in journal evaluation. American Association for the Advancement of Science. Retrieved from http://www.elshami.com/Terms/I/impact%20factor-Garfield.pdf
Garfield, E. (1976). And who shall occupy 250th chair among citation immortals. Current Contents, (22), 5–6.
Garfield, E. (1977a). The 250 most-cited primary authors, 1961-1975. Part I. How the names were selected. Current Contents, (49), 5–15.
Garfield, E. (1977b). The 250 most-cited primary authors, 1961-1975. Part II. The correlation between citedness, Nobel Prizes, and academy membership. Current Contents, (50), 5–15.
Garfield, E. (1978). The 300 most-cited authors, 1961-1976, including co-authors at last. 1. How names were selected. Current Contents, (28), 5–17.
Garfield, E. (1981). THE 1,000 CONTEMPORARY SCIENTISTS MOST-CITED 1965-1978. 1. THE BASIC LIST AND INTRODUCTION. Current Contents, (41), 5–14.
Garfield, E. (1985). History of citation indexes for chemistry: a brief review. Journal of Chemical Information and Computer Sciences, 25(3), 170–174.
Garfield, E., & Pudovkin, A. I. (2003). From materials science to nano-ceramics: Citation analysis identifies the key journals and players. Journal of Ceramic Processing Research, 4(4), 155–167.
Garfield, E., & Sher, I. H. (1963). New factors in the evaluation of scientific literature through citation indexing. American Documentation, 14(3), 195–201.
Garfield, E., & Welljams-Dorof, A. (1992). Of Nobel class: A citation perspective on high impact research authors. Theoretical Medicine, 13(2), 117–135.
Garner, J., Porter, A. L., & Newman, N. C. (2014). Distance and velocity measures: using citations to determine breadth and speed of research impact. Scientometrics, 100(3), 687–703.
Gazni, A., & Didegah, F. (2011). Investigating different types of research collaboration and citation impact: A case study of Harvard University’s publications. Scientometrics, 87(2), 251–265.
Glänzel, W., & Schubert, A. (2001). Double effort= double impact? A critical view at international co-authorship in chemistry. Scientometrics, 50(2), 199–214.
Gross, P. L. K., & Gross, E. M. (1927). College libraries and chemical education. Retrieved from http://www.pilinski.de/Diplomarbeit/Material/grossandgross_science1927.pdf
Havemann, F., & Larsen, B. (2014). Bibliometric indicators of young authors in astrophysics: Can later stars be predicted? Scientometrics, 102(2), 1413–1434.
Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences of the United States of America, 102(46), 16569–16572.
Hsu, J.-W., & Huang, D.-W. (2011). Correlation between impact and collaboration. Scientometrics, 86(2), 317–324.
Ikpaahindi, L. (1985). An overview of bibliometrics: its measurements, laws and their applications. Libri, 35(2), 163–177.
Inhaber, H., & Przednowek, K. (1976). Quality of Research and the Nobel Prizes. Social Studies of Science, 6, 33–50.
Ioannidis, J. P. (2004). Global estimates of high-level brain drain and deficit. The FASEB Journal, 18(9), 936–939.
Ioannidis, J. P. (2010). Is there a glass ceiling for highly cited scientists at the top of research universities? The FASEB Journal, 24(12), 4635–4638.
Jones, A. W. (2005). Crème de la crème in forensic science and legal medicine. International Journal of Legal Medicine, 119(2), 59–65.
Kademani, B. S., Sagar, A., & Bhanumurthy, K. (2011). Research and impact of materials science publications in India: 1999-2008. Malaysian Journal of Library & Information Science, 16(2), 63–82.
Kademani, B. S., Sagar, A., Surwase, G., & Bhanumurthy, K. (2013). Publication trends in materials science: a global perspective. Scientometrics, 94(3), 1275–1295.
Katsaros, D., Akritidis, L., & Bozanis, P. (2009). The f index: Quantifying the impact of coterminal citations on scientists’ ranking. Journal of the American Society for Information Science and Technology, 60(5), 1051–1056.
Larivière, V., & Gingras, Y. (2010). On the relationship between interdisciplinarity and scientific impact. Journal of the American Society for Information Science and Technology, 61(1), 126–131.
Larivière, V., Gingras, Y., & Archambault, E. (2009) The decline in the concentration of citations, 1900–2007. Journal of the Association for Information Science and Technology, (60)4, 858–862.
Lawani, S. M. (1981). Bibliometrics: its theoretical foundations, methods and applications. Libri, 31(1), 294–315.
Lawani S. M. (1986). Some bibliometric correlates of quality in scientific research. Scientometrics, 9(1), 13–25.
Lehmann, S., Jackson, A. D., & Lautrup, B. E. (2006). Measures for measures. Nature, 444(7122), 1003–1004.
Leydesdorff, L., & Rafols, I. (2011). Indicators of the interdisciplinarity of journals: Diversity, centrality, and citations. Journal of Informetrics, 5(1), 87–100.
Liu, J. S., Lu, L. Y., & Ho, M. H.-C. (2012). Total influence and mainstream measures for scientific researchers. Journal of Informetrics, 6(4), 496–504.
Lortie, C. J., Aarssen, L., Parker, J. N., & Allesina, S. (2012). Good news for the people who love bad news: an analysis of the funding of the top 1% most highly cited ecologists. Oikos, 121(7), 1005–1008.
Markpin, T., Boonradsamee, B., Ruksinsut, K., Yochai, W., Premkamolnetr, N., Ratchatahirun, P., & Sombatsompop, N. (2008). Article-count impact factor of materials science journals in SCI database. Scientometrics, 75(2), 251–261.
Más-Bleda, A., & Aguillo, I. F. (2013). Can a personal website be useful as an information source to assess individual scientists? The case of European highly cited researchers. Scientometrics, 96(1), 51–67.
Mas-Bleda, A., Thelwall, M., Kousha, K., & Aguillo, I. F. (2014a). Do highly cited researchers successfully use the social web? Scientometrics, 101(1), 337–356.
Mas-Bleda, A., Thelwall, M., Kousha, K., & Aguillo, I. F. (2014b). Successful researchers publicizing research online: An outlink analysis of European highly cited scientists’ personal websites. Journal of Documentation, 70(1), 148–172.
Mazloumian, A. (2012). Predicting scholars’ scientific impact. PloS One, 7(11), e49246.
McCain, K., & Turner, K. (1989). Citation context analysis and aging patterns of journal articles in molecular genetics. Scientometrics, 17(1-2), 127–163.
Merriam Webster. (2015). chemistry. Retrieved August 3, 2015, from http://www.merriam-webster.com/dictionary/chemistry
Nagpaul, P. S., & Pant, N. (1993). Cross-national assessment of specialization patterns in chemistry. Scientometrics, 27(2), 215–235.
Pan, R. K., & Fortunato, S. (2014). Author Impact Factor: Tracking the Dynamics of Individual Scientific Impact. Retrieved from http://docs.lib.purdue.edu/iatul/2014/plenaries/4/
Parker, J. N., Allesina, S., & Lortie, C. J. (2013). Characterizing a scientific elite (B): publication and citation patterns of the most highly cited scientists in environmental science and ecology. Scientometrics, 94(2), 469–480.
Parker, J. N., Lortie, C., & Allesina, S. (2010). Characterizing a scientific elite: the social characteristics of the most highly cited scientists in environmental science and ecology. Scientometrics, 85(1), 129–143.
Petersen, A. M., Fortunato, S., Pan, R. K., Kaski, K., Penner, O., Rungi, A., … Pammolli, F. (2014). Reputation and impact in academic careers. Proceedings of the National Academy of Sciences, 111(43), 15316–15321.
Ponomarev, I. V., Lawton, B. K., Williams, D. E., & Schnell, J. D. (2014). Breakthrough paper indicator 2.0: can geographical diversity and interdisciplinarity improve the accuracy of outstanding papers prediction? Scientometrics, 100(3), 755–765.
Porter, A. L., Cohen, A. S., Roessner, J. D., & Perreault, M. (2007). Measuring researcher interdisciplinarity. Scientometrics, 72(1), 117–147.
Pritchard, A. (1969). Statistical bibliography or bibliometrics. Journal of Documentation, 25(4), 348-349.
Ravallion, M., & Wagstaff, A. (2011). On measuring scholarly influence by citations. Scientometrics, 88(1), 321–337.
Schreiber, M. (2008a). A modification of the h-index: The h m-index accounts for multi-authored manuscripts. Journal of Informetrics, 2(3), 211–216.
Schreiber, M. (2008b). The influence of self-citation corrections on Egghe’sg index. Scientometrics, 76(1), 187–200.
Shapiro, F. R. (2000). The Most-Cited Legal Scholars. The Journal of Legal Studies, 29(1), 409–426.
Sidiropoulos, A., Katsaros, D., & Manolopoulos, Y. (2007). Generalized Hirsch h-index for disclosing latent facts in citation networks. Scientometrics, 72(2), 253–280.
Smith, A. T., & Eysenck, M. (2002). The correlation between RAE ratings and citation counts in psychology. Retrieved September 9, 2015, from http://cogprints.org/2749/1/citations.pdf
Smith, L. C. (1981). Citation analysis. Library Trends, 30(1), 83–106.
Sombatsompop, N., Markpin, T., Buranathiti, T., Ratchatahirun, P., Metheenukul, T., Premkamolnetr, N., & Yochai, W. (2007). Categorization and trend of materials science research from Science Citation Index (SCI) database: A case study of ceramics, metallurgy, and polymer subfields. Scientometrics, 71(2), 283–302.
Steele, T. W., & Stier, J. C. (2000). The impact of interdisciplinary research in the environmental sciences: a forestry case study. Journal of the American Society for Information Science, 51(5), 476–484.
Stern, R. S., & Arndt, K. A. (2000). Top-cited dermatology authors publishing in 5 high-impact general medical journals. Archives of Dermatology, 136(3), 357–361.
Stirling, A. (2007). A general framework for analysing diversity in science, technology and society. Journal of the Royal Society Interface, 4(15), 707–719.
Tellis, G. J., Chandy, R. K., & Ackerman, D. S. (1999). In search of diversity: The record of major marketing journals. Journal of Marketing Research, 120–131.
Thomson Reuters. (2015a). Purpose. Retrieved September 9, 2015, from http://highlycited.com/purpose/
Thomson Reuters. (2015b). Methodology. Retrieved September 9, 2015, from http://highlycited.com/methodology/
Tsay, M.-Y. (2009). An analysis and comparison of scientometric data between journals of physics, chemistry and engineering. Scientometrics, 78(2), 279–293.
US Department of Justice and Federal Trade Commission. (2010). Horizontal Merger Guidelines. Retrieved September 9, 2015, from https://www.justice.gov/atr/horizontal-merger-guidelines-08192010#5c
van Hooydonk, G. (1997). Fractional counting of multiauthored publications: Consequences for the impact of authors. Journal of the American Society for Information Science, 48(10), 944–945.
van Raan, A. F. (2006). Comparison of the Hirsch-index with standard bibliometric indicators and with peer judgment for 147 chemistry research groups. Scientometrics, 67(3), 491–502.
Vieira, E. S., & Gomes, J. A. (2011). An impact indicator for researchers. Scientometrics, 89(2), 607–629.
Walke, R., & Dhawan, S. M. (2007). Materials science research in India: a scientometric analysis. DESIDOC Journal of Library & Information Technology, 27(1), 69–76.
Waltman, L., van Eck, N. J., & Wouters, P. (2013). Counting publications and citations: Is more always better? Journal of Informetrics, 7(3), 635–641.
Web of Science. (2015). About. Retrieved September 9, 2015, from http://wokinfo.com/
Wu, J. (2013). Geographical knowledge diffusion and spatial diversity citation rank. Scientometrics, 94(1), 181–201.
Wu, Q. (2010). The w-index: A measure to assess scientific impact by focusing on widely cited papers. Journal of the American Society for Information Science and Technology, 61(3), 609–614.
Yan, E., & Ding, Y. (2011). Discovering author impact: A PageRank perspective. Information Processing & Management, 47(1), 125–134.
Yegros, A., D’Este, P., & Rafols, I. (2013). Does interdisciplinary research lead to higher citation impact? The different effect of proximal and distal interdisciplinarity. Presented at the DRUID Celebration Conference 2013. Retrieved from http://digital.csic.es/handle/10261/108433
Yoshikane, F. (2013). Multiple regression analysis of a patent’s citation frequency and quantitative characteristics: The case of Japanese patents. Scientometrics, 96(1), 365–379.
Yoshikane, F., & Suzuki, T. (2014). Diversity of fields in patent citations: synchronic and diachronic changes. Scientometrics, 98(3), 1879–1897.
Yoshikane, F., Suzuki, Y., & Tsuji, K. (2012). Analysis of the relationship between citation frequency of patents and diversity of their backward citations for Japanese patents. Scientometrics, 92(3), 721–733.
Zhang, J., Su, X., & Deng, S. (2008). The academic impact of Chinese humanities and social science research. In Aslib Proceedings (Vol. 60, pp. 55–74). Emerald Group Publishing Limited. Retrieved from http://www.emeraldinsight.com/doi/full/10.1108/00012530810847371
Zinkhan, G. M., Roth, M. S., & Saxton, M. J. (1992). Knowledge development and scientific status in consumer-behavior research: a social exchange perspective. Journal of Consumer Research, 282–291.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔