跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/09 00:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳政廷
研究生(外文):Cheng-Ting Chen
論文名稱:餌料生物換水器暨高密度輪蟲連續生產系統之研發
論文名稱(外文):Development of a zooplankton filter and a high density continuous rotifer production system
指導教授:朱元南朱元南引用關係
指導教授(外文):Yuan-Nan Chu
口試日期:2017-07-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:漁業科學研究所
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:中文
論文頁數:87
中文關鍵詞:輪蟲高密度輪蟲生產系統餌料生物換水器
外文關鍵詞:RotiferHigh-density rotifer production systemzooplankton filter
相關次數:
  • 被引用被引用:2
  • 點閱點閱:704
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
輪蟲高密度連續生產的瓶頸在於難以換水,以致於水質惡化,限制輪蟲增殖。本研究研發一台餌料生物換水器,創造出新的輪蟲連續生產模式。該餌料生物換水器係以浮游生物濾網包覆滾筒,以馬達驅動滾筒旋轉,換水時滾筒僅1/3沒入水中,內有幫浦將水抽出。滾筒的旋轉會在濾網與水體間產生剪力,避免輪蟲吸附於網布上,因此能保持濾網自淨,能減少換水對輪蟲的傷害。本研究先探討不同輪蟲密度與換水速率所需要的自淨轉速,再探討不同輪蟲密度與換水時間對輪蟲存活率與帶卵率的影響,最後進行兩次高密度輪蟲 (Brachionus plicatilis) 生產試驗。養殖水體為100 L,餌料為濃縮淡水小球藻 (Chlorella vulgaris),每天以換水器換水1-4次,每次換水量為60 %,輪蟲密度由約600 ind./ml開始,經過一週即可開始收穫。第一次生產試驗平均收穫密度可達6,569 ind./ml,持續7天;第二次生產試驗平均收穫密度可達6,638 ind./ml,持續8天。每日收穫量為水體的20 %,平均收穫量分別為1.31 × 108、1.33 × 108隻輪蟲,比增殖率分別為0.252/day與0.234/day。生產期間氨氮 (NH3-N) 濃度因換水而震盪,變化幅度在1.05-8.5 mg/L與1.1-10 mg/L之間。每次收穫時輪蟲已幾乎將水中微藻吃完,故甚少浪費。由於每次換水時,水位會降低,有利於清除底泥,能降低原生動物大量孳生的風險。本系統設備簡單,成本低,能隨時啟動生產輪蟲,適合對輪蟲有即時需求的業者使用,亦可用於商業化的量產。本換水器對生物傷害小,有潛力應用於其他餌料生物或長浮游期幼苗的生產。
Changing water is a demanding task in high-density rotifer culture. This study develops a zooplankton filter for high density rotifer continuous production. The zooplankton filter has a rotating drum which is covered by a plankton screen and driven by a motor. One-third of the rotating drum is submerged into the water. A small pump inside the drum pumps water out of the drum. The rotation of the drum produces a shearing force between the plankton screen and the surrounding water making the screen self-clean. This could not only avoid the rotifers being attached onto the screen, but also could reduce injuries of rotifers in the water changing process. The optimal rotation speeds of the drum were determined by experiment for different rotifer densities and water changing rates. The effects of rotifer density and the length of water changing time to rotifer survival rate and egg-carrying ratio were studied. Two high density rotifer production tests were then carried out. The culture volume is 100 L were fed which concentrated freshwater chlorella (Chlorella vulgaris). Water was changed 1-4 times by the zooplankton filter, each time changing 60% of water in volume per day. The rotifer density was approximately 600 ind./ml in the beginning of each test. Harvesting started after a week, daily harvested volume is 20%. The rotifer densities at harvest at 6,569 in the first test, and 6,638 in the second test. The average harvests were 1.31 × 108 and 1.33 × 108 rotifers, respectively. The growth rates were 0.252/day and 0.234/day, respectively. Ammonia-nitrogen (NH3-N) ranged between 1.05-8.5 mg/L and 1.1-10 mg/L, respectively. Microalgae in the water usually was fully consumed by the rotifer before harvesting times, thus minimizing waste. No protozoan blooming was observed in both tests, presumable due to the manual removing of the sediment after each harvest. This high-density rotifer production system is simple, inexpensive, and requires little prior effort to start. Thus, it is suitable for those who have immediate demand for rotifers and for the mass production of rotifers in commercial operations as well. The zooplankton filter system also has the potential to apply to other live food and crustacean larvae production.
致謝 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 ix
表目錄 xi
第一章 前言 12
第二章 文獻探討 14
2-1輪蟲重要性 14
2-2輪蟲簡介 14
2-3輪蟲的培養條件 16
2-4輪蟲生產方式 16
2-4-1批次式生產 16
2-4-2連續式生產 17
2-4-3半連續式輪蟲生產 18
2-5換水方式養殖輪蟲 19
第三章 研究方法與原理 20
3-1 先期試驗 23
3-1-1計數盤設計與應用 23
3-1-2 濃縮藻液分析 25
3-2 換水器設計與製作 27
3-2-1設計概念 27
3-2-2設計與製作方式 27
3-3 換水器之先前設計 29
3-3-1 第一代換水器設計 29
3-3-2 第二代換水器設計 31
3-3-3 第三代換水器設計 33
3-3-4 第四代換水器設計 36
3-3-5 第五代換水器設計 39
3-4 第六代換水器設計 42
3-5 換水試驗 44
3-5-1滾筒自淨轉速試驗 45
3-5-2換水時間對輪蟲存活率的影響 45
3-6高密度輪蟲生產試驗 46
3-6-1系統設備 46
3-6-2第一次輪蟲生產試驗 50
3-6-3第二次輪蟲生產試驗 51
3-6-4輪蟲接種與例行性操作 51
3-7分析方式 55
第四章 結果與討論 56
4-1 換水試驗結果 56
4-1-1滾筒自淨轉速試驗 56
4-1-2換水時間對輪蟲存活率的影響 58
4-1-3換水時間對輪蟲帶卵率的影響 59
4-2 換水試驗討論 60
4-3高密度輪蟲生產試驗結果 62
4-3-1第一次高密度輪蟲生產試驗 62
4-3-2第二次高密度輪蟲生產試驗 73
4-4高密度輪蟲生產試驗討論 78
第五章 結論 83
第六章 參考文獻 84
吳有恆,2006。滾筒過濾技術在養殖上的應用。國立台灣大學生物產業機電工程學研究所博士論文。
李龍雄,1992。水產養殖學。前程出版社,49-68。
馬聿安,2009。高密度輪蟲養殖系統之研發。中興大學生物產業機電工程學系研究所碩士論文。
張文重,2005。水產餌料生物學。睿煜出版社,123-134。
陳明耀,1997。生物餌料培養。水產出版社,173-207。
劉俊宏,2011。極小型輪蟲半連續培養系統之設計與開發。中興大學生物產業機電工程學系研究所碩士論文。
鄭重,李少菁,許振祖。1984。海洋浮游生物學,1-599。
鄭新鴻,陳鳳琴,陳紫媖。2009。原生動物在水產養殖上之應用。台灣省水產試驗所,46-47。
蘇惠美。1999。餌料生物之培養與利用。台灣省水產試驗所,65-86。
蘇惠美。2001。餌料生物-海水輪蟲之培養與利用 (二)。水產動物防疫簡訊。第12期,5-9。
Bentley, C.D., Carroll, P.M., Watanabe, W.O., Riedel, A.M. 2008., Intensive rotifer production in a pilot-scale continuous culture recirculating system using nonviable microalgae and an ammonia neutralizer. J. World Aquacult. Soc. 39 (5), 625-635.
Chen, S., M. B. Timmons, D. J. Aneshansley, and J. J. Bisogni Jr., 1992. Bubble size distribution in a bubble column applied to aquaculture systems. Aquacult. Eng. 11, 267-280.
Fu, Y., Hada, H., Yamashita, T., Yoshida, Y., Hino, A., 1997. Development of continuous culture system for stable mass production of the marine rotifer Brachionus. Hydrobiologia 358, 145–151.
Gatesoupe, F.J., 1989. Further advances in the nutritional and antibacterial treatments of rotifers as food for turbot larvae, Scophthalmus maximus L. In: De Pauw, N., Ackerfots, H., Wilkins, N., (eds) Aquaculture—a biotechnology in progress. Eur Aquac Soc, Bredene, Belgium 2,721–730.
Hirata, H., 1980. Culture methods of the marine rotifer Brachionus plicatilis. Min. Rev. Data File Fish. Res. 1, 27–46.
Hopkins, J.S., Hamilton, R.D.L., Sandifers, P.A., Browdy, C.L., Stokes, A.D., 1993. Effect of water exchange rate on production, water quality, effluent characteristics and nitrogen budgets of intensive shrimp ponds. J. World Aquac. Soc. 24, 304–320.
Lubzens, E., 1987. Raising rotifers for use in aquaculture. Hydrobiologia 147, 245–255.
Lubzens, E., Zmora, O., Barr, O., 2001. Biotechnology and aquaculture of rotifers. Hydrobiologia 446(447), 337–353.
Morizane, T., 1991. A review of automation and mechanization used in the production of rotifer in Japan. Rotifer and microalgae culture systems. In: Proceeding of US–Asia workshop. The Oceanic Institute,Honolulu, Hawaii, 79–88.
Önal U, Celik I, Ergun S. 2010. The performance of a small-scale, high-density, continuous system for culturing the rotifer Brachionus plicatilis. Turk J Vet Anim Sci 34, 187–195.
Fu, Y., Hada, H., Yamashita, T., Yoshida, Y., Hino, A., 1997. Development of continuous culture system for stable mass production of the marine rotifer Brachionus. Hydrobiologia 358, 145–151.
Perez-Benavente G., Gatesoupe, F.J., 1988. Bacteria associated with cultured rotifers and artemia are detri-mental to larval turbot, Scophthalmus maximus L. Aquacult Eng. 118, 289–293.
Reguera, B., 1984. The effect of ciliate contamination in mass cultures of the rotifer, Brachionus plicatilis, O.F. Müller. Aquaculture 40, 103-108.
Skjermo, J., Salvesen, I., Oie, G., Olsen, Y., Vadstein, O., 1997. Microbially matured water: a technique for selection of a non-opportunistic bacterial flora in water that may improve performance of marine larvae. Aquac. Int. 5, 13–28.
Skjermo, J., Vadstein, O., 1999. Techniques for microbial control in the intensive rearing of marine larvae. Aquaculture 177, 333–343.
Snell, T.W., E. M. Boyer, 1988. Thresholds for mictic female production in the rotifer Brachionus plicatilis. (Muller). J. Exp. Mar. Biol. Ecol. 124, 73-85.
Lavens, P., Sorgeloos, P., 1996. Manual on the production and use of live food for aquaculture. FAO, 79–250.
Suantika, G., Dhert, P., Nurhudah, M., Sorgeloos, P., 2000. High-density production of the rotifer Brachionus plicatilis in a recirculation system: consideration of water quality, zootechnical and nutritional aspects. Aquacult. Eng. 21, 201–214
Suantika, G., Dhert, P., Sweetman, E., Brien, E., Sorgeloos, P., 2003. Technical and economical feasibility of a rotifer recirculation system. Aquaculture 227, 173–189.
Vadstein, O., Øie, G., Olsen, O., 1993. Particle size dependent feeding by the rotifer Brachionus plicatilis. Hydrobiologia 255(256), 261–267.
Verschuere, L., Dhont, J., Sorgeloos, P., Verstraete, W., 1997. Monitoring biology patterns and rrK-strategists in the intensive culture of Artemia juveniles. J. Appl. Microbiol. 83, 603–612.
Yoshimatsu, T., Hossain, M.A., 2014. Recent advances in the high-density rotifer culture in Japan. Aquacult. Int. 22, 1587-1603.
Yoshimura, K., Hagiwara, A., Yoshimatsu, T., Kitajima, C., 1996. Culture technology of marine rotifers and the implications for intensive culture of marine fish in Japan. Mar. Freshwater Res. 47, 217-222.
Yoshimura, K., Kitajima, C., Miyamoto, Y., Kishimoto, G., 1994. Factors inhibiting growth of the rotifer Brachionus plicatilis in high-density cultivation by feeding condensed Chlorella. Nippon Suisan Gakkaishi 60, 207-213.
Yoshimura, K., Tanaka, K., and Yoshimatsu, T. 2003. A Novel Culture System for the Ultra-High Density Production of the Rotifer, Brachionus rotundiformis-a Preliminary Report. Aquaculture 227, 165-72.
Yu, J.P., Hirayama, K. 1986. The effect of un-ionized ammonia on the population growth of the rotifer in mass culture. Nippon Suisan Gakkaishi, 52, 1509-1513.
Yufera, M., 1982. Morphometric characterization of a small-sized strain of in culture. Aquaculture 27, 55-61.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top