(3.231.166.56) 您好!臺灣時間:2021/03/08 12:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳怡柔
研究生(外文):Yi-Rou Chen
論文名稱:利用衛星遙測技術分析日本鰻棲地品質在中國的長期變遷
論文名稱(外文):Long-term changes in habitat quality of Japanese eel(Anguilla japonica) in China based on remote sensingtechnique
指導教授:韓玉山韓玉山引用關係
口試日期:2017-06-21
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:漁業科學研究所
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:124
中文關鍵詞:日本鰻棲地品質指數衛星遙測技術常態化差異植生指數棲地破壞
外文關鍵詞:Japanese eelHabitat Quality Indexsatellite remote sensingNormalized Difference Vegetation Indexhabitat destruction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:83
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
日本鰻屬降海產卵型洄游性魚類,為東亞地區高經濟價值魚種。因完全養殖成本過高,目前養殖鰻苗來源仍須仰賴天然資源。然而,自1970 年代起日本鰻天然鰻苗資源量嚴重下降,至今捕獲量不到1970 年代的10%,棲地的破壞對於日本鰻資源量可能會造成非常嚴重的影響,因此,本研究主要由棲地破壞下手。日本鰻主要產地為中國、韓國、台灣及日本,其中中國的資源量約佔60%。本篇研究地點為鴨綠江、長江、閩江、九龍江以及珠江。本研究採用陳等人(2013)創造的一種全新的指標-棲地品質指數(HQI)評估長江棲地品質長期變遷,係利用衛星遙測方法評估日本鰻棲地的破壞程度,不但快速、便利,且可頻繁的監控,再配合上水質汙染指標即可隨時做出適當的應變機制。由於中國目前並沒有官方公布的水質污染資料,本研究利用NDVI與水中總磷之間的相關性分析其優養化程度作為水質汙染參數,並利用NBR與城鎮化之間的相關性,作為河岸水泥化參數,再搭配棲地有效面積評估長江自1970 年代到現代之間的HQI變遷。閩江、九龍江、珠江以及鴨綠江因缺乏實際測量之水質參數,因此以棲地有效面積與河岸水泥化來評估其棲地品質變遷,並將其乘積名為棲地品質容積(HQV)。
結果顯示長江的棲地品質指數自1970年代至2010年代下降69%。閩江與珠江的棲地品質容積自1970年代至2010年代分別下降28%與45%,九龍江與鴨綠江的棲地品質容積自1970年代至2010年代分別上升18%與35%。長江自1990年代之後,優養化比例佔棲地有效面積的一半以上,但在2010年代突然好轉。但是這並不代表長江棲地品質恢復,相反的,這可能代表的是使用NDVI來定義優養化仍存在侷限。2010年代的長江在夏季仍然有藻類孳生,因此,仍有優養化的可能。雖然九龍江、鴨綠江的棲地品質容積上升,但其棲地有效面積較小,能負荷的日本鰻資源量有限,因此長江的棲地對中國的日本鰻還是非常重要的。應盡快納入適當的河川管理, 從流域管理的層面, 考慮生態修復的實施, 避免棲地環境的繼續惡化。
The Japanese eel (Anguilla japonica) is a catadromous fish which is an important aquaculture species in East Asia. Eel fry used in aquaculture can only be obtained via the field capture of glass eels in estuaries because of the high cost of artificial propagation. However, eel stock has been in rapid decline since 1970s which is less than 10% in comparing to that in 1970s. Habitat destruction would pose a threat to eel stock. Thus, the present study start on habitat destruction. The main production place of Japanese eel is China, Korea, Taiwan and Japan. China contributes approximately 60% of the total catch in East Asia. The study area include Yangtze River, Minjiang, Jiulongjiang, Pearl River and Yalu River. The present study adopt Habitat Quality Index (HQI) which developed by Chen (2013) and suggested that by satellite remote sensing and water polluted index, HQI could be used for fast, convenient and largescale Japanese eel habitat evaluation. Because of a lack of long-term water polluted data from official government in China, in present study, we used the long-term Landsat data to measure the Normalized Difference Vegetation Index of water and characterize the changes of total phosphorus concentration (TP). Then, the cemented level of riverbanks is assessed by Normalized Burn Ratio (NBR) and the effective habitat area is assessed by “calculate Geometry” tool by ArcMap. Long-term changes of HQI in Yangtze River since 1970s were assessed to evaluate the long-term eel habitat quality change. Minjiang, Jiulongjiang, Pearl River and Yalu River are assessed by Habitat Quality Volume (HQV), which was calculated from two parameters: the effective habitat area and the cement level of riverbanks, due to the lack of in situ water pollution data.
Since 1970s, HQI of the Yangtze River decrease by 69%, the HQV of Minjiang and Pearl River decrease by 28% and 45%. On the other hand, HQVs of Jiulongjiang and Yalu River increase by 18% and 35%. The proportion of eutrophic region is more than half the effective habitat area after 1990s and rapidly improved in 2010s. But it didn’t mean that the habitat quality of Yangtze River began to improve. It is likely that estimating TP by NDVI has a limit. In the slow flowing area, algae can growth in summer and have the chance to cause eutrophication. Although the HQV of Jiulongjiang and Yalu River is rising, the capacity of Japanese eel is limited due to the small effective habitat area. Therefore, the habitat of Yangtze River is still important to Japanese eel. River management plan should be established as soon as possible to slow down the habitat deterioration.
致謝............................................................................................................. I
中文摘要................................................................................................... II
Abstract................................................................................................... IV
Introduction...............................................................................................1
Material and method ..............................................................................10
Study area ................................................................................................... 10
Landscape image collection ......................................................................... 10
Effective habitat area .................................................................................. 10
Eutrophication level .................................................................................... 11
River bank cement level .............................................................................. 13
Result........................................................................................................16
Habitat Quality Index in Yangtze River ...................................................... 16
Habitat Quality Volume in Minjiang, Jiulongjiang, Pearl River and Yalu
River ........................................................................................................... 17
Discussion.................................................................................................21
The long-term change of HQI in Yangtze River .......................................... 21
The long-term change of HQV in Minjiang, Jiulongjiang, Pearl River and
Yalu River ................................................................................................... 25
Remote sensing of inland waters ................................................................. 30
Normalized Burn Ratio ............................................................................... 30
Conclusion ...............................................................................................32
Reference..................................................................................................33
Figure legends
Figure 1. Study area .....................................................................................................43
Figure 2. Effective habitat area of Yangtze River in 1970s.........................................44
Figure 3. Effective habitat area of Yangtze River in 1980s.........................................45
Figure 4. Effective habitat area of Yangtze River in 1990s.........................................46
Figure 5. Effective habitat area of Yangtze River in 2000s.........................................47
Figure 6. Effective habitat area of Yangtze River in 2010s.........................................48
Figure 7. Eutrophication class of Yangtze River in 1970s ..........................................49
Figure 8. Eutrophication class of Yangtze River in 1970s ..........................................50
Figure 9. Eutrophication class of Yangtze River in 1970s ..........................................51
Figure 10. Eutrophication class of Yangtze River in 1980s ........................................52
Figure 11. Eutrophication class of Yangtze River in 1980s ........................................53
Figure 12. Eutrophication class and urbanization of Yangtze River in 1980s.............54
Figure 13. Eutrophication class and urbanization of Yangtze River in 1980s.............55
Figure 14. Eutrophication class and urbanization of Yangtze River in 1980s.............56
Figure 15. Eutrophication class of Yangtze River in 1980s ........................................57
Figure 16. Eutrophication class and urbanization of Yangtze River in 1980s.............58
Figure 17. Eutrophication class and urbanization of Yangtze River in 1980s.............59
Figure 18. Eutrophication class and urbanization of Yangtze River in 1990s.............60
Figure 19. Eutrophication class and urbanization of Yangtze River in 1990s.............61
Figure 20. Eutrophication class and urbanization of Yangtze River in 1990s.............62
Figure 21. Eutrophication class and urbanization of Yangtze River in 1990s.............63
Figure 22. Eutrophication class and urbanization of Yangtze River in 1990s.............64
Figure 23. Eutrophication class and urbanization of Yangtze River in 1990s.............65
Figure 24. Eutrophication class and urbanization of Yangtze River in 1990s.............66
Figure 25. Eutrophication class and urbanization of Yangtze River in 1990s.............67
Figure 26. Eutrophication class and urbanization of Yangtze River in 2000s.............68
Figure 27. Eutrophication class and urbanization of Yangtze River in 2000s.............69
Figure 28. Eutrophication class and urbanization of Yangtze River in 2000s.............70
Figure 29. Eutrophication class and urbanization of Yangtze River in 2000s.............71
Figure 30. Eutrophication class and urbanization of Yangtze River in 2000s.............72
Figure 31. Eutrophication class and urbanization of Yangtze River in 2000s.............73
Figure 32. Eutrophication class and urbanization of Yangtze River in 2000s.............74
Figure 33. Eutrophication class and urbanization of Yangtze River in 2000s.............75
Figure 34. Eutrophication class and urbanization of Yangtze River in 2010s.............76
Figure 35. Eutrophication class and urbanization of Yangtze River in 2010s.............77
Figure 36. Eutrophication class and urbanization of Yangtze River in 2010s.............78
Figure 37. Eutrophication class and urbanization of Yangtze River in 2010s.............79
Figure 38. Eutrophication class and urbanization of Yangtze River in 2010s.............80
Figure 39. Eutrophication class and urbanization of Yangtze River in 2010s.............81
Figure 40. Eutrophication class and urbanization of Yangtze River in 2010s.............82
Figure 41. Eutrophication class and urbanization of Yangtze River in 2010s.............83
Figure 42. Effective habitat area of Minjiang in 1970s ...............................................84
Figure 43. Effective habitat area and urbanization of Minjiang in 1980s ...................85
Figure 44. Effective habitat area and urbanization of Minjiang in 1990s ...................86
Figure 45. Effective habitat area and urbanization of Minjiang in 2000s ...................87
Figure 46. Effective habitat area and urbanization of Minjiang in 2010s ...................88
Figure 47. Effective habitat area of Jiulingjiang in 1970s ...........................................89
Figure 48. Effective habitat area and urbanization of Jiulongjiang in 1980s ..............90
Figure 49. Effective habitat area and urbanization of Jiulongjiang in 1990s ..............91
Figure 50. Effective habitat area and urbanization of Jiulongjiang in 2000s ..............92
Figure 51. Effective habitat area and urbanization of Jiulongjiang in 2010s ..............93
Figure 52. Effective habitat area of Pearl River in 1970s............................................94
Figure 53. Effective habitat area and urbanization of Pearl River in 1980s ................95
Figure 54. Effective habitat area and urbanization of Pearl River in 1990s ................96
Figure 55. Effective habitat area and urbanization of Pearl River in 2000s ................97
Figure 56. Effective habitat area and urbanization of Pearl River in 2010s ................98
Figure 57. Effective habitat area and urbanization of Yalu River in 1980s ................99
Figure 58. Effective habitat area and urbanization of Yalu River in 1990s ..............100
Figure 59. Effective habitat area and urbanization of Yalu River in 2000s ..............101
Figure 60. Effective habitat area and urbanization of Yalu River in 2010s ..............102
Figure 61. The trend of HQI ......................................................................................103
Figure 62. The area trend of Yangtze River ...............................................................103
Figure 63. The proportion of eutrophic in Yangtze River ......................................104
Table legends
Table 1. Threshold conditions to determining the extent of water eutrophication in
the Yangtze River based on total phosphorus concentration (TP) ..........................105
Table 2. The Landsat imagery date of Yangtze River in 1970s to 1980s ...............106
Table 3. Effective area of each season in Yangtze River and Poyang Lake...........107
Table 4. The Landsat imagery date of Yangtze River since 1990s .........................109
Table 5. HQI of each season in Yangtze River....................................................... 111
Table 6. HQI of each season in Poyang Lake.........................................................114
Table 7. The Landsat imagery date of Minjiang.....................................................115
Table 8. HQV of each season in Minjiang..............................................................116
Table 9. The Landsat imagery date of Jiulongjiang................................................117
Table 10. HQV of each season in Jiulongjiang ......................................................118
Table 11. The Landsat imagery date of Pearl River ...............................................119
Table 12. HQVof each season in Pearl River .........................................................120
Table 13. The Landsat imagery date of Yalu River ................................................122
Table 14. HQV of each season in Yalu River .........................................................123
Allan, J. D. (2004). Landscapes and Riverscapes: The Influence of Land Use on Stream Ecosystems. Annual Review of Ecology, Evolution, and Systematics, 35(1), 257-284. doi: 10.1146/annurev.ecolsys.35.120202.110122
Allee, R. J., & Johnson, J. E. (1999). Use of satellite imagery to estimate surface chlorophyll a and Secchi disc depth of Bull Shoals Reservoir, Arkansas, USA. International Journal of Remote Sensing, 20(6), 1057-1072.
Aoyama, J. (2009). Life history and evolution of migration in catadromous eels (genus Anguilla).
Ashley, J. T., Secor, D. H., Zlokovitz, E., Wales, S. Q., & Baker, J. E. (2000). Linking habitat use of Hudson River striped bass to accumulation of polychlorinated biphenyl congeners. Environmental Science and Technology, 34(6), 1023-1029.
Baban, S. M. J. (1993). Detecting water quality parameters in the Norfolk Broads, U.K., using Landsat imagery. International Journal of Remote Sensing, 14(7), 1247-1267. doi: 10.1080/01431169308953955
Bremle, G., Okla, L., & Larsson, P. (1995). Uptake of PCBs in fish in a contaminated river system: Bioconcentration factors measured in the field. Environmental Science and Technology, 29(8), 2010-2015.
Castilla, G., Larkin, K., Linke, J., & Hay, G. J. (2008). The impact of thematic resolution on the patch-mosaic model of natural landscapes. Landscape Ecology, 24(1), 15-23. doi: 10.1007/s10980-008-9310-z
Chander, G., Markham, B. L., & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 113(5), 893-903. doi: 10.1016/j.rse.2009.01.007
Chang, Y. L., Sheng, J., Ohashi, K., Beguer-Pon, M., & Miyazawa, Y. (2015). Impacts of Interannual Ocean Circulation Variability on Japanese Eel Larval Migration in the Western North Pacific Ocean. PLoS One, 10(12), e0144423. doi: 10.1371/journal.pone.0144423
Chen, J., Wang, F., Xia, X., & Zhang, L. (2002). Major element chemistry of the Changjiang (Yangtze River). Chemical Geology, 187(3), 231-255.
Chen, J. Z., Huang, S. L., & Han, Y. S. (2014). Impact of long-term habitat loss on the Japanese eel Anguilla japonica. Estuarine, Coastal and Shelf Science, 151, 361-369. doi: 10.1016/j.ecss.2014.06.004
Cheng, P. W., & Tzeng, W. N. (1996). Timing of metamorphosis and estuarine arrival across the dispersal range of the Japanese eel Anguilla japonica. Marine Ecology Progress Series, 131, 87-96. doi: 10.3354/meps131087
Correll, D. L. (1998). The role of phosphorus in the eutrophication of receiving waters: A review. Journal of Environmental Quality, 27(2), 261-266.
Cowx, I. G. (2002). Analysis of threats to freshwater fish conservation: past and present challenges. Conservation of Freshwater Fishes: Options for the Future, 201-220.
Daily, G. C. (1997). Nature’s services: Island Press, Washington, DC.
DeFries, R. S., Field, C. B., Fung, I., Collatz, G. J., & Bounoua, L. (1999). Combining satellite data and biogeochemical models to estimate global effects of human-induced land cover change on carbon emissions and primary productivity. Global Biogeochemical Cycles, 13(3), 803-815. doi: 10.1029/1999gb900037
Dekker, A. G., & Peters, S. W. M. (1993). The use of the Thematic Mapper for the analysis of eutrophic lakes: a case study in the Netherlands. International Journal of Remote Sensing, 14(5), 799-821. doi: 10.1080/01431169308904379
Dierssen, H. M., Kudela, R. M., Ryan, J. P., & Zimmerman, R. C. (2006). Red and black tides: Quantitative analysis of water‐leaving radiance and perceived color for phytoplankton, colored dissolved organic matter, and suspended sediments. Limnology and Oceanography, 51(6), 2646-2659.
Ding, Z. H., Liu, C. E., Tang, Q. H., Wang, W. H., & Zhuang, M. (2005). Environmental pollution in estuary of the Yangtze River and coastal water--Mercury as an example. Resources and Environment in the Yangtze Basin, 14(2), 204-207.
Duan, S., Xu, F., & Wang, L. J. (2007). Long-term changes in nutrient concentrations of the Changjiang River and principal tributaries. Biogeochemistry, 85(2), 215-234. doi: 10.1007/s10533-007-9130-2
Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z., Knowler, D. J., Leveque, C., Naiman, R. J., Prieur-Richard, A. H., Soto, D., Stiassny, M. L., & Sullivan, C. A. (2006). Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews of the Cambridge Philosophical Society, 81(2), 163-182. doi: 10.1017/S1464793105006950
Dynesius, M., & Nilsson, С. (1994). Fragmentation and flow regula? tion of river systems in the northern third of the world. Science, 266, 753-762.
Esri, I. N. C. (2008). ArcGIS 9.3. Environmental Systems Research Institute, Redlands.
Fu, C., Wu, J., Chen, J., Wu, Q., & Lei, G. (2003). Freshwater fish biodiversity in the Yangtze River basin of China: patterns, threats and conservation. Biodiversity and Conservation, 12(8), 1649-1685.
Fukuda, N., Miller, M. J., Aoyama, J., Shinoda, A., & Tsukamoto, K. (2013). Evaluation of the pigmentation stages and body proportions from the glass eel to yellow eel in Anguilla japonica. Fisheries Science, 79(3), 425-438. doi: 10.1007/s12562-013-0621-x
Geeraerts, C., & Belpaire, C. (2010). The effects of contaminants in European eel: a review. Ecotoxicology, 19(2), 239-266. doi: 10.1007/s10646-009-0424-0
Griffith, J. A., Martinko, E. A., Whistler, J. L., & Price, K. P. (2002). Interrelationships among landscapes, NDVI, and stream water quality in the US Central Plains. . Ecological Applications, 12(6), 1702-1718.
Gulati, R. D., & Van Donk, E. (2002). Lakes in the Netherlands, their origin, eutrophication and restoration: state-of-the-art review. Hydrobiologia, 478(1-3), 73-106.
Hadjimitsis, D. G., Markogianni, V., Dimitriou, E., Tzortziou, M., Themistocleous, K., Michaelides, S., & Papadavid, G. (2013). Monitoring of chlorophyll-a and turbidity in Evros River (Greece) using Landsat imagery. First International Conference on Remote Sensing and Geoinformation of Environment, 87950R-87950R. doi: 10.1117/12.2027047
Han, Y. S., & Tzeng, W. N. (2007). Sex-dependent habitat use by the Japanese eel Anguilla japonica in Taiwan. Marine Ecology Progress Series, 338, 193-198.
Han, Y. S., Zhang, H., Tseng, Y. H., & Shen, M. L. (2012). Larval Japanese eel (Anguilla japonica) as sub-surface current bio-tracers on the East Asia continental shelf. Fisheries Oceanography, 21(4), 281-290. doi: 10.1111/j.1365-2419.2012.00624.x
Harrington, J. A., Schiebe, F. R., & Nix, J. F. (1992). Remote sensing of Lake Chicot, Arkansas: Monitoring suspended sediments, turbidity, and Secchi depth with Landsat MSS data. Remote Sensing of Environment, 39(1), 15-27.
Hope, B., Scatolini, S., & Titus, E. (1998). Bioconcentration of chlorinated biphenyls in biota from the North Pacific Ocean. Chemosphere, 36(6), 1247-1261.
Huang, S. F., & Chen, C. H. (1998). Surface Runoff Analysis of Farmland Precipitation in Huangpu River Basin. Shanghai Environmental Sciences, 17, 21-23.
Huang, Z. G., Li, P. R., Zhang, Z. Y., Li, K., & Qiao, P. N. (1982). Formation, development and evolution of the Pearl River delta. The Guangzhou Branch of Popular Science Press, Guangzhou.
Itakura, H., Kaino, T., Miyake, Y., Kitagawa, T., & Kimura, S. (2015). Feeding, condition, and abundance of Japanese eels from natural and revetment habitats in the Tone River, Japan. Environmental Biology of Fishes, 98(8), 1871-1888. doi: 10.1007/s10641-015-0404-6
Jacoby, D., & Gollock, M. (2014). Anguilla anguilla. The IUCN red list of threatened species., Version, 26(1).
Jing, L. (2008). On environmental protection of the Yangtze River Estuary deepwater channel regulation project. Journal of Waterway, Port, Coastal, and Ocean Engineering, 10(2008), 259–275.
Kaifu, K., Tamura, M., Aoyama, J., & Tsukamoto, K. (2010). Dispersal of yellow phase Japanese eels Anguilla japonica after recruitment in the Kojima Bay-Asahi River system, Japan. Environmental Biology of Fishes, 88(3), 273-282. doi: 10.1007/s10641-010-9640-y
Kawakami, Y., Mochioka, N., & Nakazono, A. (1999). Immigration patterns of glass-eels Anguilla japonica entering river in northern Kyushu, Japan. Bulletin of marine science, 64(2), 315-327.
Keiner, L. E., & Yan, X. H. (1998). A neural network model for estimating sea surface chlorophyll and sediments from thematic mapper imagery. Remote Sensing of Environment, 66(2), 153-165.
Kerr, J. T., & Ostrovsky, M. (2003). From space to species: ecological applications for remote sensing. Trends in Ecology & Evolution, 18(6), 299-305. doi: 10.1016/s0169-5347(03)00071-5
Kiage, L. M., & Walker, N. D. (2008). Using NDVI from MODIS to Monitor Duckweed Bloom in Lake Maracaibo, Venezuela. Water Resources Management, 23(6), 1125-1135. doi: 10.1007/s11269-008-9318-9
Kim, H., Kimura, S., Shinoda, A., Kitagawa, T., Sasai, Y., & Sasaki, H. (2007). Effect of El Niño on migration and larval transport of the Japanese eel (Anguilla japonica). ICES Journal of Marine Science: Journal du Conseil, 64(7), 1387-1395.
Kimura, S., Döös, K., & Coward, A. C. (1999). Numerical simulation to resolve the issue of downstream migration of the Japanese eel. Marine Ecology Progress Series, 186, 303-306.
Kimura, S., Inoue, T., & Sugimoto, T. (2001). Fluctuation in the distribution of low‐salinity water in the North Equatorial Current and its effect on the larval transport of the Japanese eel. Fisheries Oceanography, 10(1), 51-60.
Kimura, S., Tsukamoto, K., & Sugimoto, T. (1994). A model for the larval migration of the Japanese eel: roles of the trade winds and salinity front Marine Biology, 119, 185-190.
Knights, B. (2003). A review of the possible impacts of long-term oceanic and climate changes and fishing mortality on recruitment of anguillid eels of the Northern Hemisphere. Science of The Total Environment, 310(1-3), 237-244. doi: 10.1016/s0048-9697(02)00644-7
Kotake, A., Arai, T., Okamura, A., Yamada, Y., Utoh, T., Oka, H. P., Miller, M. J., & Tsukamoto, K. (2007). Ecological aspects of the Japanese eel, Anguilla japonica, collected from coastal areas of Japan. Zoological Science, 24(12), 1213-1221. doi: 10.2108/zsj.24.1213
Kung, H. T., & Ying, L. G. (1991). A study of lake eutrophication in Shanghai, China. Geographical Journal, 45-50.
Lee, W. C., Chen, Y. H., Lee, Y. C., & Liao, I. C. (2003). The competitiveness of the eel aquaculture in Taiwan, Japan, and China. Aquaculture, 221(1-4), 115-124. doi: 10.1016/s0044-8486(03)00004-8
Li, L., Lu, X., & Chen, Z. (2007a). River channel change during the last 50 years in the middle Yangtze River, the Jianli reach. Geomorphology, 85(3-4), 185-196. doi: 10.1016/j.geomorph.2006.03.035
Li, Q., Wu, Z., Chu, B., Zhang, N., Cai, S., & Fang, J. (2007b). Heavy metals in coastal wetland sediments of the Pearl River Estuary, China. Environmental Pollution, 149(2), 158-164. doi: 10.1016/j.envpol.2007.01.006
Liao, I. C. (2002). Aquaculture development strategies in Asia for the 21st century. Paper presented at the the APO Study Meeting on Sustainable Fishery Management, Sustainable Fishery Management in Asia, Asian Productivity Organization, Tokyo, Japan.
Liu, Y., Zheng, G. J., Yu, H., Martin, M., Richardson, B. J., Lam, M. H., & Lam, P. K. (2005). Polybrominated diphenyl ethers (PBDEs) in sediments and mussel tissues from Hong Kong marine waters. Marine Pollution Bulletin, 50(11), 1173-1184. doi: 10.1016/j.marpolbul.2005.04.025
Müller, B., Berg, M., Yao, Z. P., Zhang, X. F., Wang, D., & Pfluger, A. (2008). How polluted is the Yangtze river? Water quality downstream from the Three Gorges Dam. Science of The Total Environment, 402(2-3), 232-247. doi: 10.1016/j.scitotenv.2008.04.049
Mai, B. X., Fu, J. M., Sheng, G. Y., Kang, Y. H., Lin, Z., Zhang, G., Min, Y. S., & Zeng, E. Y. (2002). Chlorinated and polycyclic aromatic hydrocarbons in riverine and estuarine sediments from Pearl River Delta, China. Environmental Pollution, 117(3), 457-474.
Masek, J. G., Lindsay, F. E., & Goward, S. N. (2000). Dynamics of urban growth in the Washington DC metropolitan area, 1973-1996, from Landsat observations. International Journal of Remote Sensing, 21(8), 3473-3486.
Merem, E. C., & Twumasi, Y. A. (2008). Using spatial information technologies as monitoring devices in international watershed conservation along the Senegal River Basin of West Africa. International journal of environmental research and public health, 5(5), 464-476.
Milliman, J. D. (1997). Blessed dams or damned dams? Nature, 386, 325-327.
Nellis, M. D., Harrington, J. A., & Wu, J. (1998). Remote sensing of temporal and spatial variations in pool size, suspended sediment, turbidity, and Secchi depth in Tuttle Creek Reservoir, Kansas: 1993. Geomorphology, 21(3-4), 281-293.
Nie, X., Lan, C., Wei, T., & Yufeng, Y. (2005). Distribution of polychlorinated biphenyls in the water, sediment and fish from the Pearl River estuary, China. Marine Pollution Bulletin, 50(5), 537-546. doi: 10.1016/j.marpolbul.2004.11.046
OECD. (1982). Eutrophication of Waters: Monitoring, Assessment and Control. (Paris: Organization for Economic Cooperation and Development).
Okamura, A., Horie, N., Mikawa, N., Yamada, Y., & Tsukamoto, K. (2014). Recent advances in artificial production of glass eels for conservation of anguillid eel populations. Ecology of Freshwater Fish, 23(1), 95-110. doi: 10.1111/eff.12086
Otake, T., Miller, M. J., Inagaki, T., Minagawa, G., Shinoda, A., Kimura, Y., Sasai, S., Oya, M., Tasumi, S., Suzuki, Y., Uchida, M., & Tsukamoto, K. (2006). Evidence for migration of metamorphosing larvae of Anguilla japonica in the Kuroshio. Coastal Marine Science, 30(2), 453-458.
Palmer, S. C. J., Kutser, T., & Hunter, P. D. (2015). Remote sensing of inland waters: Challenges, progress and future directions. Remote Sensing of Environment, 157, 1-8. doi: 10.1016/j.rse.2014.09.021
Pattiaratchi, C., Lavery, P., Wyllie, A., & Hick, P. (1994). Estimates of water quality in coastal waters using multi-date Landsat Thematic Mapper data. International Journal of Remote Sensing, 15(8), 1571-1584. doi: 10.1080/01431169408954192
Ren, W., Zhong, Y., Meligrana, J., Anderson, B., Watt, W. E., Chen, J., & Leung, H. L. (2003). Urbanization, land use, and water quality in Shanghai. Environment International, 29(5), 649-659. doi: 10.1016/s0160-4120(03)00051-5
Roelfsema, C., Dennison, B., Phinn, S., Dekker, A., & Brando, V. (2001). Remote sensing of a cyanobacterial bloom (lyngbya Majuscula) in Moreton Bay, Australia. Geoscience and Remote Sensing Symposium, 2001. IGARSS''01. IEEE 2001 International, 2, 613-615.
Rosenberg, D. M., McCully, P., & Pringle, C. M. (2000). Global-scale environmental effects of hydrological alterations: introduction. BioScience, 50(9), 746-751.
Roy, D. P., Boschetti, L., & Trigg, S. N. (2006). Remote Sensing of Fire Severity: Assessing the Performance of the Normalized Burn Ratio. IEEE Geoscience and Remote Sensing Letters, 3(1), 112-116. doi: 10.1109/lgrs.2005.858485
Shang, G. P., & Shang, J. C. (2007). Spatial and temporal variations of eutrophication in Western Chaohu Lake, China. Environmental Monitoring and Assessment, 130(1-3), 99-109. doi: 10.1007/s10661-006-9381-8
Shao, M., Tang, X., Zhang, Y., & Li, W. (2006). City clusters in China: air and surface water pollution. Frontiers in Ecology and the Environment, 4(7), 353-361.
Sheffield, K., & Morse-McNabb, E. (2013). Creating an historical land cover data set for the Wimmera region, Victoria, Australia from the USGS Landsat archive. Geoscience and Remote Sensing Symposium (IGARSS), 2013 IEEE International, 2649-2652.
Shinoda, A., Aoyama, J., Miller, M. J., Otake, T., Mochioka, N., Watanabe, S., Minegishi, Y., Kuroki, M., Yoshinaga, T., Yokouchi, K., Fukuda, N., Sudo, R., Hagihara, S., Zenimoto, K., Suzuki, Y., Oya, M., Inagaki, T., Kimura, S., Fukui, A., Lee, T. W., & Tsukamoto, K. (2011). Evaluation of the larval distribution and migration of the Japanese eel in the western North Pacific. Reviews in Fish Biology and Fisheries, 21(3), 591-611. doi: 10.1007/s11160-010-9195-1
Smith, V. H., & Schindler, D. W. (2009). Eutrophication science: where do we go from here? Trends in Ecology & Evolution, 24(4), 201-207. doi: 10.1016/j.tree.2008.11.009
Tankisho. (2004). An Enigma on Resource Dynamic Variety of Larvae of Anguilla Japonica Temminck et Schlegel. Agriculture, 41(12), 72-75.
Tassan, S. (1987). Evaluation of the potential of the Thematic Mapper for marine application. International Journal of Remote Sensing, 8(10), 1455-1478. doi: 10.1080/01431168708954789
Tatsukawa, K. (2003). Eel Resources in East Asia Eel biology, Springer Japan, 293-298.
Tsukamoto, K. (1992). Discovery of the spawning area for Japanese eel. Nature, 356(6372), 789.
Tsukamoto, K. (2009). Oceanic migration and spawning of anguillid eels. Journal of Fish Biology, 74(9), 1833-1852. doi: 10.1111/j.1095-8649.2009.02242.x
Tsukamoto, K., & Arai, T. (2001). Facultative catadromy of the eel Anguilla japonica between freshwater and seawater habitats. Marine Ecology Progress Series, 220, 265-276.
Tzeng, W. N., Shiao, J. C., & Iizuka, Y. (2002). Use of otolith Sr:Ca ratios to study the riverine migratory behaviors of Japanese eel Anguilla japonica. Marine Ecology Progress Series, 245, 213-221. doi: 10.3354/meps245213
Tzeng, W. N., Tseng, Y. H., Han, Y. S., Hsu, C. C., Chang, C. W., Di Lorenzo, E., & Hsieh, C. H. (2012). Evaluation of multi-scale climate effects on annual recruitment levels of the Japanese eel, Anguilla japonica, to Taiwan. PLoS One, 7(2), e30805. doi: 10.1371/journal.pone.0030805
Vonlanthen, P., Bittner, D., Hudson, A. G., Young, K. A., Muller, R., Lundsgaard-Hansen, B., Roy, D., Di Piazza, S., Largiader, C. R., & Seehausen, O. (2012). Eutrophication causes speciation reversal in whitefish adaptive radiations. Nature, 482(7385), 357-362. doi: 10.1038/nature10824
Wang, X. G., Xie, H., Yu, W. J., Xuan, M. C., Shi, J. Y., Kou, L. X., & Yu, J. G. (2007). Evaluation of Fishery Water Quality in Downstream Yalu River. Fisheries Science, 10, 006.
Ward, R. M., & Liang, W. (1995). Shanghai water supply and wastewater disposal. Geographical Review, 141-156.
Wen, Y., Khosrowpanah, S., & Heitz, L. (2011). Land cover change of watersheds in Southern Guam from 1973 to 2001. Environmental Monitoring and Assessment, 179(1-4), 521-529. doi: 10.1007/s10661-010-1760-5
Wong, C. M., Williams, C. E., Collier, U., Schelle, P., & Pittock, J. (2007). World''s top 10 rivers at risk. esocialsciences. com Working Papers.
Wu, C., Wu, J., Qi, J., Zhang, L., Huang, H., Lou, L., & Chen, Y. (2010). Empirical estimation of total phosphorus concentration in the mainstream of the Qiantang River in China using Landsat TM data. International Journal of Remote Sensing, 31(9), 2309-2324. doi: 10.1080/01431160902973873
Wu, J., Huang, J., Han, X., Gao, X., He, F., Jiang, M., Jiang, Z., Primack, R. B., & Shen, Z. (2004). The three gorges dam: an ecological perspective. Frontiers in Ecology and the Environment, 2(5), 241-248.
Wu, Y. L., & Zuo, Q. (2007). Water Quality of Pearl River Basin and the Peculiar Regional Cooperation of Water Pollution Control. Meteoiological and environmental Sciences, 30(3).
Wulder, M. A., Masek, J. G., Cohen, W. B., Loveland, T. R., & Woodcock, C. E. (2012). Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sensing of Environment, 122, 2-10. doi: 10.1016/j.rse.2012.01.010
Xu, H. Q. (2005). A Study on Information Extraction of Water Body with the Modified Normalized Difference Water Index (MNDWI). Journal of remote sensing, 9(5), 589-595.
Yan, W., Zhang, S., Sun, P., & Seitzinger, S. P. (2003). How do nitrogen inputs to the Changjiang basin impact the Changjiang River nitrate: A temporal analysis for 1968-1997. Global Biogeochemical Cycles, 17(4). doi: 10.1029/2002gb002029
Yang, X., Anderson, N. J., Dong, X., & Shen, J. I. (2008). Surface sediment diatom assemblages and epilimnetic total phosphorus in large, shallow lakes of the Yangtze floodplain: their relationships and implications for assessing long-term eutrophication. Freshwater Biology, 53(7), 1273-1290. doi: 10.1111/j.1365-2427.2007.01921.x
Yokouchi, K., Fukuda, N., Miller, M. J., Aoyama, J., Daverat, F., & Tsukamoto, K. (2012). Influences of early habitat use on the migratory plasticity and demography of Japanese eels in central Japan. Estuarine, Coastal and Shelf Science, 107, 132-140. doi: 10.1016/j.ecss.2012.05.009
Zenimoto, K., Kitagawa, T., Miyazaki, S., Sasai, Y., Sasaki, H., & Kimura, S. (2009). The effects of seasonal and interannual variability of oceanic structure in the western Pacific North Equatorial Current on larval transport of the Japanese eel Anguilla japonica. Journal of Fish Biology, 74(9), 1878-1890. doi: 10.1111/j.1095-8649.2009.02295.x
Zhang, H., He, W., Tong, C., & Lu, J. (2008). The effect of fishing the anguillid elver (Anguilla japonica) on the fishery of the Yangtze estuary. Estuarine, Coastal and Shelf Science, 76(4), 902-908. doi: 10.1016/j.ecss.2007.08.019
Zhang, J. Y., Luo, L., Li, C. S., Ma, R. H., Wan, D. B., & Tan, Y. S. (2000a). Effects of central route of water transferring project from the Yangtze River basin on ecological environments in the middle and the lower reaches of the Hangjiang River. Environmental Science and Technology, 90, 1–32.
Zhang, Z. L., Hong, H. S., Khalid, M., Zhou, J. L., Chen, W. Q., & Xu, L. (2000b). The trends and characteristics of organochlorines pollution in surface sediments of Xiamen Western Bay. Acta Scientiae Circumstantiae, 20(6), 731-735.
Zhang, Z. L., Hong, H. S., Zhou, J. L., Huang, J., & Yu, G. (2003). Fate and assessment of persistent organic pollutants in water and sediment from Minjiang River Estuary, Southeast China. Chemosphere, 52(9), 1423-1430. doi: 10.1016/s0045-6535(03)00478-8
Zhang, Z. L., Hong, H. S., Zhou, J. L., & Yu, G. (2004). Phase association of polycyclic aromatic hydrocarbons in the Minjiang River Estuary, China. Science of The Total Environment, 323(1-3), 71-86. doi: 10.1016/j.scitotenv.2003.09.026
Zhao, B., Kreuter, U., Li, B., Ma, Z., Chen, J., & Nakagoshi, N. (2004). An ecosystem service value assessment of land-use change on Chongming Island, China. Land Use Policy, 21(2), 139-148. doi: 10.1016/j.landusepol.2003.10.003
Zhou, C. C., & Xie, H. B. (2007). Study on Protection of Eco-environment in Minjiang River Basin Ground water, 29(4).
Zhou, H. Y., Cheung, R. Y. H., & Wong, M. H. (1999). Bioaccumulation of organochlorines in freshwater fish with different feeding modes cultured in treated wastewater. Water Research, 33(12), 2747-2756.
王积钦. (1992). 珠江流域主要河流1990 年度水质评价. 人民珠江, 3, 23-25.
孫超. (2007). 廣州珠江河段水質分析和防治. 吉林水利, 5.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔