跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2025/01/26 03:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳宗堂
研究生(外文):Zhong Tang Wu
論文名稱:超幾何算子之 ZETA 行列式
論文名稱(外文):ZETA Determinant of Hypergeomertic Equation viaRamanujan’s Identity
指導教授:謝春忠陳其誠陳其誠引用關係
指導教授(外文):Chun-Chung HsiehKi-Seng Tan
口試日期:2017-04-07
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:數學研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:19
中文關鍵詞:高斯超幾何方程Zeta 行列式正則奇異施圖姆-劉維爾算子拉馬努金公式closed form
外文關鍵詞:Hypergeometric equationSturm-Liouville formZeta determinantRegular Singular Sturm-Liouville operators.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:354
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文研究高斯超幾何方程的施圖姆-劉維爾形式及其Zeta 行列式.基於Lesch 給出以wronskian 表示正則奇異施圖姆-劉維爾算子之Zeta 行列式的公式,以及拉馬努金的某項公式,便得出本文的主要結果: 超幾何方程之施圖姆-劉維爾形式的Zeta 行列式之closed form.
In the thesis, the eignevalue probelm of the Hypergeometric equation(for short: HGE or E(a,b,c)) is discussed. There are three parts in this thesis.First of all, I introduce some heuristic backgrounds and motivations of the eigenvalue problem of HGE. The second part is a survey about the theory of the HGE. Finally, based on Lesch’s formula of zeta determinant of Regular Singular Sturm-Liouville Operators, I calculate the zeta determinant with repect to the Sturm-Liouville form of HGE operator on a closed interval, by using Ramanujan''s identities.
口試委員會審定書……………………………………………………………… #
誌謝………………………………………………………………………………. i
中文摘要………………………………………………………………………… ii
Abstract……………………………..…………………………………………… iii
第一章 Introduction…………………………………………………………………..1
1.1 Motivation and main results…...…………………………………………… 1
1.2 Heat Kernel and Mellin Transform in the Case of Riemann Zeta………….. 4
1.3 Some Backgrounds………………………………………..…………………6
第二章A Survey of the Hypergeometric Equation……………..…………………. 8
2.1 Hypergeomteric Series.…………………………………..……………….…8
2.2 Hypergeomteric Equation..……………..………………..……………….…8
2.3 Integral representation of Hypergeomteric series.…….....……………….…9
2.4 Projective Equivalence implies Sturm-Liouville form of Hypergeomteric
equation..……………..………………..……………….…..……………..……..9
2.5 Schwarz derivative of Schwarz map..……. ....………....………………….10
第三章 Calculation of the Zeta Determinant….. ……………………….…………12
第四章 Appendix…………………………………………..………………………15
4.1 Laplacian in polar coordinates of half plane and Disk.…………………….15
4.2 Eigenproblem of Laplacian implies hypergeometric..…………………..….15
參考文獻…………………………………………………………………….…… 18
[1] Brning Jochen and Seeley Robert, The resolvent expansion for second order regular singular operators, Journal of functional analysis,vol.73,no.2,p.369-p.429,1987,
Elsevier
[2] Lesch Matthias, Determinants of Regular Singular Sturm-Liouville Operators, Mathematische Nachrichten, vol.194, no.1, p.139-p.170, 1998, Wiley Online Library
[3] Yoshida Masaaki, Hypergeometric functions, my love: modular interpretations of conguration spaces, 2013, Springer Science& Business Media
[4] Mimachi Katsuhisa and Yoshida Masaaki, Intersection numbers of twisted cycles and the correlation functions of the conformal field theory, Communications in mathematical physics, vol.234, no.2, p.339-p.358, 2003, Springer
[5] Ichikawa Takashi, Teichmller groupoids and Galois action, Journal fur die Reine und Angewandte Mathematik, vol.559, p.95-p.114,2 003, Walter de Gruyter Berlin New York
[6] Ichikawa Takashi, Teichmller groupoids,and monodromy in conformal field theory, Communications in mathematical physics, vol.246, no.1, p.1-p.18, 2004, Springer
[7] Brning Jochen and Seeley Robert Regular singular asymptotics, Advances in mathematics, vol.58, no.2, p.133-p.148,1985,Elsevier
[8] Brning Jochen, Heat equation asymptotics for singular Sturm-Liouville operators, Mathematische Annalen, vol.268, no.2, p.173-p.196, 1984, Springer
[9] Umehara Masaaki and Yamada Kotaro and others, Metrics of constant curvature 1 with three conical singularities on the 2-sphere, Illinois Journal of Mathematics, vol.44, no.1, p.72-p.94, 2000, University of Illinois at Urbana-Champaign,Department of Mathematics
[10] Kraus Daniela and Roth Oliver and Sugawa Toshiyuki, Metrics with conical singularities on the sphere and sharp extensions of the theorems of Landau and Schottky,
Mathematische Zeitschrift,vol.267,no.3,p.851-p.868, 2011, Springer
[11] BruceC.Berndt, Ramanujans Notebooks,Part2, 1989, Springer NewYork
[12] BruceC.Berndt,S.Bhargava and Frank G.Garvan, Ramanujan''s theories of elliptic functions to alternative bases, Trans.Amer.Math.Soc.347,4163-4244,1995, American Mathematical Society.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top