跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/01/14 11:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:梁釗瑋
研究生(外文):Chao-Wei Liang
論文名稱:Holonomy為Spin(7)的緊緻八維流形
論文名稱(外文):Compact 8-manifolds with holonomy Spin(7)
指導教授:王藹農
指導教授(外文):Ai-Nung Wang
口試委員:蔡宜洵崔茂培
口試日期:2017-07-03
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:數學研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:16
中文關鍵詞:流形和樂群旋量群微分形式李群
外文關鍵詞:manifoldholonomySpindifferential formLie group
相關次數:
  • 被引用被引用:0
  • 點閱點閱:119
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在Berger 對非對稱流形Holonomy group 的分類中,Spin(7) 為一個特例,八維流形可能會有Spin(7) 的Holonomy group,而第一個緊緻且有Spin(7) Holonomy group 的流形是由Dominic Joyce 所構造,在這篇文章中會討論Joyce 構造流形的過程。
In Berger’s classification of holonomy groups of non-symmetric manifolds, Spin(7) is a special case. The first compact manifold with holonomy Spin(7) is constructed by Dominic Joyce in 1996. In this article, we will discuss Joyce’s construction of such manifolds.
口試委員審定書i
誌謝ii
中文摘要iii
Abstract iv
1 Introduction 1
1.1 Holonomy groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Spin(7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Forms and Spin(7)-structures . . . . . . . . . . . . . . . . . . . . 4
1.4 Eguchi-Hanson space and Kummer construction . . . . . . . . . . 5
1.5 Sobolev space, Sobolev norm . . . . . . . . . . . . . . . . . . . . 7
2 Crucial Theorems and Steps to construct manifolds with holonomy
Spin(7) 7
2.1 Crucial Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Steps to construct manifolds with holonomy Spin(7) . . . . . . . 9
3 Construction of 8-manifolds 9
3.1 Resolving singularities of orbifolds . . . . . . . . . . . . . . . . . 9
3.2 8-manifolds with holonomy Spin(7) . . . . . . . . . . . . . . . . . 12
References 16
References
[1] Dominic D.Joyce Compact 8-manifolds with holonomy Spin(7). (1996)
[2] Dominic D.Joyce Compact Manifolds with Special Holonomy. (2000)
[3] Dominic D.Joyce Riemannian Holonomy Groups and Calibrated Geometry.
(2007)
[4] Dominic D.Joyce Compact riemannian 7-manifolds with holonomy G2 I.
(1996)
[5] Dominic D.Joyce Compact riemannian 7-manifolds with holonomy G2 II.
(1996)
[6] Dominic D.Joyce Compact Riemannian Manifolds with Exceptional Holonomy.
(1999)
[7] Christine Taylor Compact Manifolds with Holonomy Spin(7). (1996)
[8] Simon Salamon Riemannian geometry and holonomy groups. (1989)
[9] Robert L.Bryant Metric with exceptional holonomy. (1987)
[10] Anthony W. Knapp Lie Groups Beyond an Introduction, Second Edition.
(2002)
[11] Raoul Bott and Loring W. Tu Differential Forms in Algebraic Topology.
(1982)
[12] Claude Chevalley and Samuel Eilenberg Cohomology Theory of Lie Groups
and Lie Algebras. (1948)
[13] John W. Milnor and James D. Stasheff Characteristic classes. (1974)
[14] John M. Lee Introduction to smooth manifolds. (2002)
[15] Jurgen Jost Riemannian Geometry and Geometric Analysis. (2008)
[16] Phillip Griffiths and Joseph Harris Principles of Algebraic Geometry. (1994)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top