跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/12 04:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉俊廷
研究生(外文):Jun-Ting Liu
論文名稱:以光固化3D列印技術製造阿基米德螺旋形微混合器之探討
論文名稱(外文):Stereolithographic 3D Printing of Archimedes Screw Micromixer
指導教授:單秋成單秋成引用關係
口試委員:鍾添東林志郎廖顯奎江家慶
口試日期:2017-01-16
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:78
中文關鍵詞:光固化聚合技術微混合器阿基米德螺旋
外文關鍵詞:Vat polymerizationMicromixerArchimedes Screw
相關次數:
  • 被引用被引用:3
  • 點閱點閱:288
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
微混合器可分為主動式和被動式,被動式混合器主要以改變流道幾何形狀來增加流體混合效果,在改變幾何形狀同時仍須保持流道內的暢通性,因此本論文在流道中引入阿基米德螺旋形狀混合器,利用其薄壁多向性,預期可達到同時提升混合效率又能保持流道內暢通的效果。微機電製程技術在微小結構物上製作已經非常成熟,由於光罩上的限制,較不利於製作三維多方向性的曲面結構,3D列印以疊層製造的方式做出複雜的三維曲面,然而以目前3D列印技術製作微米級結構仍有一定程度的困難,本論文探討如何以數位光學處理(Digital Light Processing, DLP)之光固化技術製作出微小且具有三維曲面之結構,首先將商用投影機的鏡頭搭配套筒改裝,接著探討包括樹脂配方選用、曝光時間、切層厚度等對於製程上的影響,目標是以DLP技術做出既能逼近雙光子聚合技術(Two-photon Polymerization, TPP)之微小尺寸,又可快速製造更大的尺寸。最後製造出微米級的阿基米德螺旋,應用在微混合器中,進行混合測試。研究結果顯示,改良式DLP可成功列印出最小流道寬度750 阿基米德螺旋結構。
Micromixers can be classified as passive or active micromixers. Passive micromixers improve mixing efficiency mainly by changing the geometry. When changing the geometry, it’s also necessary to keep the flow of microchannel without obstruction at the same time. So Archimede’s Screw is printed in the microchannel in this thesis. Taking advantage of thin-wall and multi-directional property of Archimede’s Screw, increasing mixing efficiency and keeping the channel permeable could simultaneously be expected. Although microstructure fabrication could be achieved successfully by using MEMS technology, it’s still difficult to produce multi-directional curved surface structure by using MEMS technology due to the limitation of mask. 3D Printing technology can manufacture complex surface with layer-by-layer technique but still has some difficulties in producing micron-level structure. This thesis investigates how to use DLP technology to fabricate micro and curved surface structure. At first refitting the sleeve of commercial projector has been executed. Then the effect of the exposure time, the layer thickness and the composition of resin on the process have also been studied. The objective is to produce the microstructure almost as same as adopting TPP(Two-photon Polymerization) by using DLP technology. Finally, micron-level Archimede’s Screw is successfully printed in the microchannel and mixing test has been done. The results reveal that this improved DLP technology has the ability to print the channel with a minimum width of 750 .
摘要 i
Abstract ii
目錄 iii
圖目錄 v
符號表 ix
表目錄 viii
第一章 緒論 1
1.1前言 1
1.2研究動機 2
1.3論文架構 3
第二章 文獻回顧 4
2.1積層製造技術 4
2.2 DLP光固化技術 10
2.2.1 DLP投影機 10
2.2.2 DMD成像原理 11
2.2.3光聚合反應 12
2.2.4薄膜厚度 13
2.2.5 DLP光固化上照式與下照式比較 15
2.3混合器 17
2.3.1主動式混合器 18
2.3.2被動式混合器 20
第三章 實驗方法 27
3.1實驗設備 27
3.2機台解析度 38
3.2.1投影機光場強度 38
3.2.2樹脂選用 41
3.2.3薄片製作 43
3.3阿基米德螺旋印製 49
3.3.1螺旋設計 49
3.3.2螺旋印製 52
第四章 微混合器模擬與測試 56
4.1數值方法 56
4.1.1基礎理論 56
4.1.2邊界條件設定 57
4.1.3微混合器模擬 58
4.2微混合器測試 59
第五章 結論 64
參考文獻 68
附錄 71
[1]AboutAdditiveManufacturing.Availablefrom:http://www.lboro.ac.uk/research/amrg/about/the7categoriesofadditivemanufacturing/.
[2]VatPhotopolymerisation.Availablefrom:https://www.studyblue.com/notes/note/n/vatphotopolymerisation/deck/16390299
[3]3D Printing Industry. Availablefrom: http://3dprintingindustry.com/3d-printing-basics-free-beginners-guide/processes/
[4]DREAMS Laboratory. Availablefrom: http://www.me.vt.edu/dreams/material-jetting/
[5]開源科技有限公司, 3D列印機初學入門指南. 2015.
[6]ThePowderBedFusionLaserprocess.Availablefrom:https://www.researchgate.net/figure/281686549_fig1_Fig-1-The-Powder-Bed-Fusion-Laser-process.
[7]蔡福森DLP 投影機技術與產品動態. 1998.
[8]德州儀器亞洲區DLP事業部門. DLP™技術概要. 2003.
[9]中正嶺學報. 雙光子吸收光致聚合技術應用於微元件製作之研究.2005.
[10]劉瑞祥, 光感性高分子. 1987.
[11]Nguyen, N.-T. and Z. Wu, Micromixers—a review. Journal of Micromechanics and Microengineering, 2004. 15(2): p. R1.
[12]Bau, H.H., J. Zhong, and M. Yi, A minute magneto hydro dynamic (MHD) mixer. Sensors and Actuators B: Chemical, 2001. 79(2): p. 207-215.
[13]Liu, R.H., Bubble-induced acoustic micromixing. Lab on a Chip, 2002. 2(3): p. 151-157.
[14]Mao, H., T. Yang, and P.S. Cremer, A microfluidic device with a linear temperature gradient for parallel and combinatorial measurements. Journal of the American Chemical Society, 2002. 124(16): p. 4432-4435.
[15]Kamholz, A.E., Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor. Analytical chemistry, 1999. 71(23): p. 5340-5347.
[16]Kamholz, A.E. and P. Yager, Molecular diffusive scaling laws in pressure-driven microfluidic channels: deviation from one-dimensional Einstein approximations. Sensors and Actuators B: Chemical, 2002. 82(1): p. 117-121.
[17]Ismagilov, R.F., Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels. Applied Physics Letters, 2000. 76(17): p. 2376-2378.
[18]Wong, S.H., M.C. Ward, and C.W. Wharton, Micro T-mixer as a rapid mixing micromixer. Sensors and Actuators B: Chemical, 2004. 100(3): p. 359-379.
[19]Yi, M. and H.H. Bau, The kinematics of bend-induced mixing in micro-conduits. International Journal of Heat and Fluid Flow, 2003. 24(5): p. 645-656.
[20]Gobby, D., P. Angeli, and A. Gavriilidis, Mixing characteristics of T-type microfluidic mixers. Journal of Micromechanics and microengineering, 2001. 11(2): p. 126.
[21]Veenstra, T., Characterization method for a new diffusion mixer applicable in micro flow injection analysis systems. Journal of Micromechanics and Microengineering, 1999. 9(2): p. 199.
[22]Branebjerg, J., Fast mixing by lamination. in Micro Electro Mechanical Systems, 1996, MEMS''96, Proceedings. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems. IEEE, The Ninth Annual International Workshop on. 1996. IEEE.
[23]Schwesinger, N., T. Frank, and H. Wurmus, A modular microfluid system with an integrated micromixer. Journal of Micromechanics and Microengineering, 1996. 6(1): p. 99.
[24]Munson, M.S. and P. Yager, Simple quantitative optical method for monitoring the extent of mixing applied to a novel microfluidic mixer. Analytica Chimica Acta, 2004. 507(1): p. 63-71.
[25]Melin, J., A fast passive and planar liquid sample micromixer. Lab on a Chip, 2004. 4(3): p. 214-219.
[26]Miyake, R., Micro mixer with fast diffusion. in Micro Electro Mechanical Systems, 1993, MEMS''93, Proceedings An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems. IEEE. 1993. IEEE.
[27]Voldman, J., M.L. Gray, and M.A. Schmidt, An integrated liquid mixer/valve. Journal of Microelectromechanical Systems, 2000. 9(3): p. 295-302.
[28]Wang, H., Optimizing layout of obstacles for enhanced mixing in microchannels. Smart materials and structures, 2002. 11(5): p. 662.
[29]Wong, S.H., Investigation of mixing in a cross-shaped micromixer with static mixing elements for reaction kinetics studies. Sensors and Actuators B: Chemical, 2003. 95(1): p. 414-424.
[30]Johnson, T.J., D. Ross, and L.E. Locascio, Rapid microfluidic mixing. Analytical chemistry, 2002. 74(1): p. 45-51.
[31]Stroock, A.D., Chaotic mixer for microchannels. Science, 2002. 295(5555): p. 647-651.
[32]Hong, C.-C., J.-W. Choi, and C.H. Ahn, A novel in-plane passive microfluidic mixer with modified Tesla structures. Lab on a Chip, 2004. 4(2): p. 109-113.
[33]Tsai, R.-T. and C.-Y. Wu, An efficient micromixer based on multidirectional vortices due to baffles and channel curvature. Biomicrofluidics, 2011. 5(1): p. 014103.
[34]Bird, R.B., Transport phenomena. Applied Mechanics Reviews, 2002. 55(1): p. R1-R4.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top