(3.237.234.213) 您好!臺灣時間:2021/03/09 11:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林子揚
研究生(外文):Tzu-Yang Lin
論文名稱:壓電極子發射與接收電磁波的研究
論文名稱(外文):Electromagnetic Radiation and Reception Characteristics of Piezoelectric Polariton
指導教授:周元昉
口試委員:劉建豪莊嘉揚
口試日期:2017-04-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:73
中文關鍵詞:週期極化鈮酸鋰天線壓電超晶格極子
外文關鍵詞:PPLNAntennaPiezoelectric SuperlatticePolarition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:92
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
週期性結構之特殊性質,在過往研究中皆有許多人討論,經由壓電之特性配合週期性變化,使電磁統御方程式與牛頓第二運動定律相互作用,讓電磁波與機械波在壓電材料中耦合。其應用於現代科技中,隨著行動通訊的崛起,天線種類各式各樣,但以週期性調變的壓電材料來做為電磁波信號的收發裝置,還曾未有人多加著墨於此。
本文以不同於以往的天線材料來實現天線的微型化,透過週期極化之鈮酸鋰材料作為電磁波收發裝置,至今無人嘗試,希望能擺脫了天線以往厚重的線圈型態,以輕盈的晶片大幅縮小了天線的尺寸體積。
週期極化鈮酸鋰簡稱PPLN,具有接收與輻射電磁波之物理性質。內部的波傳行為同時具有電磁波與機械波。本文探討347.6MHz的頻率激發晶體內部之波傳行為所呈現出電磁波的收發特性,藉此作為新型微型化天線之關鍵理論。
本文成功製作出週期為 之鈮酸鋰晶片。並且詳細探討小週期結構之鈮酸鋰極化之製程,透過前人理論推導將鈮酸鋰內部之波傳行為有一詳細描述,將以此作為實驗參考對照之依據,加以探討其收發輻射電磁波時,其PPLN內部之能量情形。
There have been many researches which focused on the particular characteristics of the periodic structures. Through the characteristics of the piezoelectric with the periodic changes in structure causes the mutual effect between the electromagnetic governing equation and Newton''s second law of motion to interact with each other to make it couple electromagnetic waves and mechanical waves in the piezoelectric material. Applied it into the modern technology arising with the mobile communication, there is wide variety of the antenna, which also mean that Antenna plays an important role. However, not so many researches about the transmitter device about the electronic signals based on the periodic structures.
In the article, it is totally different than used to be. Miniaturizing the antenna with a novel idea and new material has been tried. By using periodically poled Lithium Niobate as an electromagnetic wave transceiver, which hasn’t been tried before, we proposed a new tech of miniaturized and abandoned the conventional antenna which are composed by coil.
Periodically Poled Lithium Niobate, abbreviated as PPLN, possess the ability of receiving and transmitting physical characteristic of the electromagnetic wave. The inner wave propagation contains both of the electromagnetic and mechanical wave in the meanwhile, which is the key characteristic of achieving miniaturization. And which is used as the key theory to be the miniature of the antenna
In this article, we focus on the frequency 347.6MHz, and successfully created the correspondence in the PPLN. By comparing with previous researches about its inside wave propagation and using the detailed description by the elder, we concluded a detailed discussion about its electromagnetic wave receiving and transmitting performance and used it as a comparison to discuss.
致謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 V
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 本文內容 4
第二章 壓電超晶格之平面諧和波 6
2.1 頻散曲線-1及其能量分布 8
2.2 頻散曲線-2及其能量分布 9
2.3 頻散曲線-3及其能量分布 10
2.4 頻散曲線-4及其能量分布 11
第三章 週期極化鈮酸鋰的製程與製作 13
3.1 鈮酸鋰的順電相與鐵電相 13
3.2 高電壓下週期極化的長晶模型 15
3.3 週期電極之鋪設與製程 21
3.4 週期極化鈮酸鋰之實驗 29
第四章 電磁輻射與接收實驗 38
4.1 壓電極子之電磁波量測 38
4.2 共基板E1激發單埠之量測 39
4.3 共基板E2激發單埠之量測 43
4.4 共基板E2激發雙埠之量測 48
4.5 E2場激發與接收之幅射量測 64
第五章 結論與建議 71
參考文獻 72
[1]崔育銘,壓電超晶格極子之電磁輻射與接收特性研究,國立台灣大學機械工程研究碩士論文,2015.
[2]E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett., vol. 58, no. 20, pp. 2059–2062, May 1987.
[3]Y. Zhu, Y. Chen, S. Zhu, Y. Qin, and N. Ming, “Acoustic Superlattices and Ultrasonic Waves Excited by Crossed-Field Scheme,” Mater. Lett., vol. 28, no. 4, pp. 503–505, Oct. 1996.
[4]Y. Chen, S. Zhu, Y. Zhu, N. Ming, B. Jin, and R. Wu “High-Frequency Resonance in Acoustic Superlattice of Periodically Poled LiTaO3,” Appl. Phys. Lett., vol. 70, no. 5, pp. 592–594, Feb. 1997.
[5]Y. Lu, Y. Zhu, Y. Chen, S. Zhu, N. Ming, and Y.-J. Feng, “Optical Properties of an Ionic-Type Phononic Crystal,” Science, vol. 284, no. 5421, pp. 1822–1824, Jun. 1999.
[6]Y. Zhu, X. Zhang, Y. Lu, Y. Chen, S. Zhu, and N. Ming, “New Type of Polariton in a Piezoelectric Superlattice,” Phys. Rev. Lett., vol. 90, no. 5, p. 053903, Feb. 2003.
[7]X. Zhang, R. Zhu, J. Zhao, Y. Chen, and Y. Zhu, “Phonon-Polariton Dispersion and the Polariton-Based Photonic Band Gap in Piezoelectric Superlattices,” Phys. Rev. B, vol. 69, no. 8, p. 085118, Feb. 2004.
[8]X.J. Zhang, Y. Lu, Y. Zhu, Y. Chen, and S. Zhu, “Phonon-Polaritons in Quasiperiodic Piezoelectric Superlattices,” Appl. Phys. Lett., vol. 85, no. 16, pp. 3531-3533, Oct. 2004.
[9]W. Zhang, Z. Liu, and Z. Wang, “Band Structures and Transmission Spectra of Piezoelectric Superlattices,” Phys. Rev. B, vol. 71, no. 19, p. 195114, May 2005.
[10]C. Huang and Y. Zhu, “Piezoelectric-Induced Polariton Coupling in a Superlattice,” Phys. Rev. Lett., vol. 94, no. 11, p. 117401, Mar. 2005.
[11] 陽明益,壓電超晶格之極子特性研究, 國立台灣大學機械工程研究所博士論文,2008.
[12] B.J. Kim, C.S. Kim, D.J. Kim, H.H. Lim, S.K. Park, and M. Cha, “Fabrication of Thick Periodically-poled Lithium Niobate Crystals by Standard Electric Field Poling and Direct Bonding,” Appl. Phys. Lett., vol. 14, no. 4, pp. 420-423, Dec. 2010
[13] E. Courjon, F. Bassignot, G. Ulliac, S. Benchabane, and S. Ballandras, “Acoustic Wave Filter Based on Periodically Poled Lithium Niobate,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 59, no. 9, pp. 1942–1949, Sep. 2012.
[14] V. Y. Shur, E. A. Mingaliev, V. A. Lebedev, D. K. Kuznetsov, and D. V. Fursov, “Polarization Reversal Induced by Heating-Cooling Cycles in MgO Doped Lithium Niobate Crystals,” J. Appl. Phys., vol. 113, no. 18, p. 187211, May 2013.
[15] B. Tian, H. Chen, D. K. Choge, Y. Xu, G. Li, and W. Liang, “Nondestructive Characterization of the Domain Structure of Periodically Poled Lithium Niobate Crystal Based on Rigorous Coupled-Wave Analysis,” Optoelectron. Lett., vol. 13, no. 3, pp. 206–209, May 2017.
[16]鄒嘉威,週期極化鈮酸鋰之電磁波輻射與接收研究,國立台灣大學機械工程研究碩士論文,2013.
[17]施誌華,週期極化壓電超晶格平板的電磁輻射, 國立台灣大學機械工程研究碩士論文,2010.
[18] G. D. Miller, Periodically Poled Lithium Niobate. Doctor dissertation, Department of Electrical Engineering, Stanford University, 1998.
[19]J. Yang, An Introduction to the Theory of Piezoelectricity, 9th
ed. Springer, Boston, 2005.
[20] R. G. Batchko, V. Y. Shur, M. M. Fejer, and R. L. Byer, “Backswitch Poling in Lithium Niobate for High-Fidelity Domain Patterning and Efficient Blue Light Generation,” Appl. Phys. Lett., vol. 75, no. 12, pp. 1673–1675, Sep. 1999.
[21]B. A. Auld, Acousitc Fields and Waves in Solids, 2nd
ed. ,Malabar, Florida, 1973.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔