(3.232.129.123) 您好!臺灣時間:2021/03/06 02:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許柏青
研究生(外文):Po-Ching Hsu
論文名稱:磁力連動雙邊壓電式質子交換膜燃料電池堆之研究
論文名稱(外文):A Bi-cell Proton Exchange Membrane Fuel Cell Stack with a Magnetically Driven Piezoelectric Actuator
指導教授:馬小康馬小康引用關係
指導教授(外文):Hsiao-Kan Ma
口試日期:2017-06-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:80
中文關鍵詞:自然進氣雙電池堆漸縮漸擴管壓電制動器質子交換膜燃料電池
外文關鍵詞:Air breathingBi-cell StackNozzle and DiffuserPiezoelectric ActuatorProton Exchange Membrane Fuel Cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:57
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究發展一種利用壓電驅動原件製造一個空氣泵浦(Air-breathing),以供應質子交換膜燃料電池(PEMFC)堆所需要的氧氣。利用永久磁鐵與壓電驅動原件結合的磁力去推動三個空氣泵浦。這樣的設計可以使空氣幫浦能同時為磁力連動雙邊壓電式質子交換膜燃料電池堆(後稱“bi-cell PZTmag-PEMFC stack”)的所有陰極流道板提供足夠的空氣。在操作條件40 V以及70 Hz時,當PZTmag與PDMSmag同時使用直徑6 mm厚度1 mm的磁鐵時,可以得到最大的位移量87 μm,耗能為0.03 W。最後經由實驗結果得知bi-cell PZTmag-PEMFC stack之淨輸出能量密度為0.1925 W cm-2,比較過去研究[1]的3顆bi-cell PZT-PEMFC,發電量淨輸出能量密度提高了20%,且體積與重量分別降低了68%以及76%。此外,與傳統雙極板流道設計的六顆串聯質子交換膜燃料電池相比[2],本研究所設計之燃料電池在歐姆極化區損失的電壓降較小。
This study develops an air-breathing pump driven by a piezoelectric actuator to provide air for a Proton Exchange Membrane Fuel Cell (PEMFC) stack. Permanent magnets are combined with a piezoelectric actuator to drive three air breathing pumps using the magnetic force. This design enables the pump to simultaneously provide a sufficient amount of air to all the cathode flow field plate of a “bi-cell PZTmag–PEMFC stack”. When both the PZTmag and the PDMSmag used a magnet with a 6 mm diameter and 1 mm thickness, the maximum amplitude of 87 μm was produced under operating conditions of 70 Hz and 40 V, and the power consumption was 0.03 W. The resulting maximum net power density of the bi-cell PZTmag–PEMFC stack was 0.1925 W cm-2. Compared with the performance reported in previous research [1] on three bi-cell PZT-PEMFC, the net power density increased by 20%, and its volume and weight were reduced by 68% and 76%, respectively. Furthermore, this design has less voltage loss in ohmic polarization region compared with the traditional bipolar plate PEMFC stack when the cells are in series [2].
口試委員審定書 I
致謝 II
摘要 III
Abstract IV
目錄 V
圖目錄 VIII
表目錄 XI
符號表 XII
第一章 緒論 1
1.1前言 1
1.2研究背景 1
1.2.1 燃料電池簡介 1
1.2.2 燃料電池種類介紹 2
1.2.3 質子交換膜燃料電池之構造 6
1.2.4 燃料電池之流道板設計 7
1.3研究動機與目的 8
1.4文獻回顧 9
第二章 壓電磁力燃料電池堆工作原理 13
2.1燃料電池基本原理 13
2.1.1燃料電池理想電位 13
2.1.2燃料電池之極化損失 14
2.1.3燃料電池效率分析 15
2.1.4 燃料電池反應所需氫氣量與氧氣量 17
2.2 壓電材料的特性 18
2.2.1壓電效應 18
2.2.2壓電材料 18
2.3壓電磁力制動器機制分析 19
2.3.1無閥空氣幫浦作動機制 19
2.3.2磁力壓電薄膜理論 22
第三章 壓電磁力燃料電池堆設計與製造 24
3.1 PZT 24
3.2 PDMS薄膜製造 24
3.3膜電極組(MEA) 25
3.4銣鐵硼磁鐵 25
3.5壓電磁力燃料電池堆製造 25
3.6壓電磁力燃料電池堆設計參數與材料 26
第四章 實驗設備與方法 28
4.1實驗設備 28
4.1.1燃料電池測試機台 28
4.1.2氣體質量流量控制器 28
4.1.3壓電片供電儀器與量測裝置 28
4.1.4光纖位移計 29
4.1.4示波器 30
4.2 PZT制動器振幅實驗 30
4.2.1 PDMS固化時間對PZT制動器之影響 30
4.2.2不同磁鐵尺寸對PZTmag制動器工作之影響 31
4.2.3不同磁鐵尺寸對PZTmag燃料電池堆工作之影響 31
4.3電池堆組裝與電性實驗 31
4.3.1電池組裝方法 32
4.3.3實驗步驟與機台設定 33
第五章 結果與討論 35
5.1 PZT-PDMS制動器之震動振幅理論值 35
5.2 PZT-PDMS制動器之震動振幅與消耗功率 35
5.3 磁鐵尺寸對PZTmag制動器之影響 36
5.4 電池堆組裝對PZTmag之影響 36
5.5壓電磁力燃料電池堆串聯發電量 37
5.6壓電磁力燃料電池堆各電池組發電量 38
第六章 結論與建議 40
6.1結論 40
6.2建議 41
參考文獻 42
[1]H. K. Ma, H. M. Cheng, W. Y. Cheng, F. M. Fang, and W. F. Luo, "Development of a piezoelectric proton exchange membrane fuel cell stack (PZT-Stack)," Journal of Power Sources, vol. 240, pp. 314-322, 2013.
[2]M. E. Youssef, R. S. Amin, and K. M. El-Khatib, "Development and performance analysis of PEMFC stack based on bipolar plates fabricated employing different designs," Arabian Journal of Chemistry, 2015.
[3]黃鎮江, 燃料電池: 全華圖書股份有限公司, 2005.
[4]Taiwan Fuel Cell Information. http://www.tfci.org.tw/fc/class.asp
[5]Scheme of a solid-oxide fuel cell. https://en.wikipedia.org/wiki/Solid oxide fuel cell
[6]Schematic representation of an alkaline fuel cell. https://en.wikipedia.org /wiki/alkaline fuel cell.
[7]Scheme of a phosphoric acid fuel cell. https://en.wikipedia.org/wiki/Phosphoric acid fuel cell
[8]L. Caprile, B. Passalacqua, and A. Torazza, "Carbon capture: Energy wasting technologies or the MCFCs challenge?," International Journal of Hydrogen Energy, vol. 36, pp. 10269-10277, 2011.
[9]P. Andreas. Polymer Electrolyte Membrane (PEM) Fuel Cells. http://www.p frang.de/pageID 2388563.html
[10]D. V. J. Sabb. Designing Fuel Cells for Improved Transportation Safety and Security. http://www.scsu.edu/utc/old/research/Reports/2002/fuel.htm
[11]教育部能源國家型科技人才培育計畫102年度特色能源教材. http://www.enedu.org.tw/files/DownloadFile/2013101505326.pdf
[12]X. Li and I. Sabir, "Review of bipolar plates in PEM fuel cells: Flow-field designs," International Journal of Hydrogen Energy, vol. 30, pp. 359-371, 2005.
[13]A. P. Manso, F. F. Marzo, J. Barranco, X. Garikano, and M. Garmendia Mujika, "Influence of geometric parameters of the flow fields on the performance of a PEM fuel cell. A review," International Journal of Hydrogen Energy, vol. 37, pp. 15256-15287, 2012.
[14]A. Ullmann, "The piezoelectric valve-less pump—performance enhancement analysis," Sensors and Actuators A: Physical, vol. 69, pp. 97-105, 1998.
[15]R. Jiang and D. Chu, "Stack design and performance of polymer electrolyte membrane fuel cells," Journal of Power Sources, vol. 93, pp. 25-31, 2001.
[16]A. Kumar and R. G. Reddy, "Effect of channel dimensions and shape in the flow-field distributor on the performance of polymer electrolyte membrane fuel cells," Journal of Power Sources, vol. 113, pp. 11-18, 2003.
[17]B. Wang, X. Chu, E. Li, and L. Li, "Simulations and analysis of a piezoelectric micropump," Ultrasonics, vol. 44, Supplement, pp. e643-e646, 2006.
[18]D. Fuard, T. Tzvetkova-Chevolleau, S. Decossas, P. Tracqui, and P. Schiavone, "Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility," Microelectronic Engineering, vol. 85, pp. 1289-1293, 2008.
[19]H. K. Ma, S. H. Huang, B. R. Chen, and L. W. Cheng, "Numerical study of a novel micro-diaphragm flow channel with piezoelectric device for proton exchange membrane fuel cells," Journal of Power Sources, vol. 180, pp. 402-409, 2008.
[20]H. K. Ma, S. H. Huang, J. S. Wang, C. G. Hou, C. C. Yu, and B. R. Chen, "Experimental study of a novel piezoelectric proton exchange membrane fuel cell with nozzle and diffuser," Journal of Power Sources, vol. 195, pp. 1393-1400, 2010.
[21]H. K. Ma, J. S. Wang, and Y. T. Chang, "Development of a novel pseudo bipolar piezoelectric proton exchange membrane fuel cell with nozzle and diffuser," Journal of Power Sources, vol. 196, pp. 3766-3772, 2011.
[22]H. K. Ma, J. S. Wang, W. H. Su, and W. Y. Cheng, "The performance of a novel pseudo-bipolar bi-cell piezoelectric proton exchange membrane fuel cell with a smaller nozzle and diffuser," Journal of Power Sources, vol. 196, pp. 7564-7571, 2011.
[23]D. Lee and J. Bae, "Visualization of flooding in a single cell and stacks by using a newly-designed transparent PEMFC," International Journal of Hydrogen Energy, vol. 37, pp. 422-435, 2012.
[24]H. K. Ma, H. C. Su, and W. F. Luo, "Investigation of a piezoelectric fan cooling system with multiple magnetic fans," Sensors and Actuators A: Physical, vol. 189, pp. 356-363, 2013.
[25]陳泰順, "新型可攜式壓電質子交換膜燃料電池之研究," 國立台灣大學機械工程研究所, 2016.
[26]J. Larminie and A. Dicks, Fuel Cell System Explained Second Edition ed.: Wiley, 2003.
[27]D. Vatansever, E. Siores, and T. Shah., Alternative Resources for Renewable Energy: Piezoelectric and Photovoltaic Smart Structures, 2012.
[28]朱建國、孫小松、李衛, 電子與光電子材料: 北京國防工業出版社.
[29]M. T. Ahmadian and M. Amin, "Design optimization by numerical characterization of fluid flow through the valveless diffuser micropumps," Journal of Physics: Conference Series, vol. 34, p. 379, 2006.
[30]S. Timoshenko and S. Woinowsky-Krieger, Theory of plates and shells: McGraw-Hill, 1959.
[31]E. P. Furlani, Permanent Magnet and Electromechanical Devices, 2001.
[32]J. E. Mark, Polymer Data Handbook: Oxford University Press, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔