跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/02/11 00:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:柯傅堯
研究生(外文):Fu-Yao Ko
論文名稱:以IEEE-14測試系統探討輸配電網路在強風條件下之恢復時間與損失能量
論文名稱(外文):Investigation of Restoration Time and Energy Loss of Electricity Grid Subjected to Strong Winds by using IEEE 14-Bus Test System
指導教授:吳文方
指導教授(外文):Wen-Fang Wu
口試日期:2017-07-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:58
中文關鍵詞:電力系統強風事件連鎖失效蒙地卡羅模擬可靠度可利用度
外文關鍵詞:Power gridstrong windcascading failuresMonte Carlo simulationreliabilityavailability
相關次數:
  • 被引用被引用:1
  • 點閱點閱:2464
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
最近幾年由於全球暖化,世界各地都出現極端天氣,再加上2011年發生福島核電廠事故後,許多國家意識到核能發電的危險性,紛紛要求廢除核能,而其電力不足的部分將由可再生能源取代。對此許多已開發國家的電力傳輸網路勢必要做一些改變,其目標為:(1)再生能源所占總發電的比例增加後,需要克服供電不穩的問題;(2)為提供更可靠的服務,並增加安全性和效益,必須降低電力系統部分區域失效或受到惡意攻擊時之傷害,改善系統對環境之適應能力。由於現行電力系統的可靠度與可利用度指標都沒有把極端天氣納入考量,所以本論文中,我們將極端天氣之隨機模型與基於直流功率流假設和適當的再分配策略之可靠連鎖失效模擬結合,進行電力系統可靠度與可利用度相關研究與探討。其中在電網之動態描述中,本研究特別引入恢復模型,反映工作人員在極端天氣下調度電力有可能遇到之發展情況。本研究將利用量身訂作的連鎖蒙地卡羅方案求解問題,探討電力系統受到極端天氣事件時之可靠度與可利用度,最後用IEEE14-Bus電力系統之測試範例進行驗證。研究結果發現,雖然極端天氣出現的時間並不長,但會對電力系統之可靠度與可利用度帶來極大的影響。
The power transmission networks in many countries must be changed. They meet the difficulty of stochastically fluctuating power contributions due to the connections of more and more renewable power generation units. To provide reliable service and increase the safety and profit, they must also decrease their vulnerabilities to failures or malicious attacks and improve their resilience. Because of the above facts, a cascading failure simulation model based on the direct current (DC) power flow approximation and a proportional re-dispatch strategy combining with a stochastic model for the occurrences of extreme weather is proposed in this thesis. The description of dynamics of the network is completed by the introduction of a novel restoration model accounting for the operating conditions that a repair crew may encounter during an extreme weather event. The model is solved by a customized sequential Monte Carlo scheme for quantitative investigation of the impact of extreme weather events on the performance, especially the reliability and availability of power grid. The approach is demonstrated with reference to the test case of the IEEE14-bus power transmission network. The result shows that though the extreme weather occurs rarely, it has a huge impact on the reliability and availability of the power grid.
致謝 I
中文摘要 II
Abstract III
目錄 IV
圖目錄 VII
表目錄 IX
符號列表 X
第一章 緒論 1
1.1 前言 1
1.2 台灣的電力系統 2
1.3 研究動機與目的 3
1.4 本文架構 4
第二章 分析模型說明 7
2.1 強風事件之模擬 7
2.2 蒙地卡羅方法(Monte Carlo method) 8
2.3 電力傳輸系統連鎖故障之隨機模型 9
2.3.1 正常和強風條件下失效之隨機模型 11
2.3.2 連鎖故障模型 13
2.3.3 電力系統之修復模型 17
第三章 模擬流程 19
3.1 模擬流程說明 19
3.2 可靠度/可利用度之指標 21
第四章 分析與模擬細節 23
4.1 研究方法概述 23
4.2 天氣資料整理 24
4.3 天氣狀態模擬 28
4.4 欲模擬電力傳輸系統之介紹 29
4.5 模擬電力傳輸系統可靠度/可利用度之流程 31
4.5.1 修復時間之模擬 32
4.5.2 線路故障數目之模擬 35
4.5.3 損失能量之模擬 35
第五章 案例分析 39
5.1 澎湖地區風速資料之分析 39
5.2 澎湖地區風場之模擬 40
5.3 電力傳輸系統於強風之失效率 41
5.4 電力傳輸系統可靠度/可利用度指標 42
5.4.1 修復時間 42
5.4.2 線路故障數目 43
5.4.3 損失能量 44
5.5 結果與討論 45
第六章 結論與未來展望 47
6.1 研究限制 48
6.2 結論 50
6.3 未來研究方向 50
參考文獻 53
[1]東京電力株式會社,福島原子力事故調査報告書,2012年6月20日。
[2]吳明竑,新電業法後之電力供應探討, 行政院原子能委員會核能研究所能源資訊平台,2017年3月。http://eip.iner.gov.tw/index.php?option=com_flexicontent&view=item&cid=57:%E8%83%BD%E6%BA%90%E4%BE%9B%E9%9C%80&id=4193:%E6%96%B0%E9%9B%BB%E6%A5%AD%E6%B3%95%E5%BE%8C%E4%B9%8B%E9%9B%BB%E5%8A%9B%E4%BE%9B%E6%87%89%E6%8E%A2%E8%A8%8E 存取時間:2017年05月26日。
[3]國家發展委員會,綠能政策目標、未來規劃及執行現況,立法院就9屆第1會期經濟委員會第24次全體委員會議書面報告,2016年6月22日。
[4]P. Eser, A. Singh, N. Chokani, and R.S. Abhari, “Effect of increased renewables generation on operation of thermal power plants,” Applied Energy, 164:723-732, 2015.
[5]Union for the Coordination of the Transmission of Electricity (UCTE), Final Report of the Investigation Committee on the 28 September 2003 Blackout in Italy, April 2004.
[6]Union for the Coordination of the Transmission of Electricity (UCTE), Final Report, System Disturbance on 4 November 2006, January 2007.
[7]A.H. Sanstad, S. McMenamin, A. Sukenik, G.L. Barbose, and C.A. Goldman, “Modeling an aggressive energy-efficiency scenario in long-range load forecasting for electric power transmission planning,” Applied Energy, 128:265-276, 2014.
[8]J. Lin, Y.Z. Sun, C. Lin, and W.Z. Gao, “Assessment of the power reduction of wind farms under extreme wind condition by a high resolution simulation model,” Applied Energy, 96:21-32, 2011.
[9]M. Kezunovic, I. Dobson, and Y. Dong, “Impact of extreme weather on power system blackouts and forced outages: new challenges,” Proceedings of the 7th Balkan Power Conference - BPC 2008, pp. 1-5, Šibenik, Croatia, October 2008.
[10]台灣電力公司,台電供電系統簡介, http://www.taipower.com.tw/content/new_info/new_info-c21.aspx 存取時間:2017年05月26日。
[11]R.J. Campbell, Weather-Related Power Outages and Electric System Resiliency, US CRS (Congressional Research Service) Report for Congress, August 28, 2012.
[12]R. Billinton and R. N. Allan, Reliability Evaluation of Power Systems, 2nd Edition, Springer, 1996.
[13]R. Billinton, C. Wu, and G. Singh, “Extreme adverse weather modeling in transmission and distribution system reliability evaluation,” Proceedings of the 14th Power Systems Computation Conference 2002 (PSCC 2002), Paper 1:1-7, Sevilla, Spain, June 2002.
[14]K. Alvehag and L. Soder, “A stochastic weather dependent reliability model for distribution systems,” IEEE Proceedings of the 10th International Conference on Probabilistic Methods Applied to Power Systems, 9343-2521:1-8, Rincón, Puerto Rico, May 2008.
[15]K. Alvehag and L. Soder, “A reliability model for distribution systems incorporating seasonal variations in severe weather,” IEEE Transactions on Power Delivery, 26(2):910-919, 2011.
[16]R.E. Brown, S. Gupta, R.D. Christie, S.S. Venkata, and R. Fletcher, “Distribution system reliability assessment: momentary interruptions and storms,” IEEE Transactions on Power Delivery, 12(4):1569-1575, 1997.
[17]C. Lallemand, Methodology for a Risk Based Asset Management, Master Thesis, KTH School of Electrical Engineering, Royal Institute of Technology, Stockholm, Sweden, 2008.
[18]N. Balijepalli, S.S. Venkata, C.W. Richter, R.D. Christie, and V.J. Longo, “Distribution system reliability assessment due to lighting storms,” IEEE Transactions on Power Delivery,20(3):2153-2159, 2005.
[19]G. Li, P. Zhang, P.B. Luh, W.Y. Li, Z.H. Bie, C. Serna, and Z.B. Zhao, “Risk analysis for distribution systems in the northeast U.S. under wind storms,” IEEE Transactions on Power Systems, 29(2):889-898, 2014.
[20]蒙地卡羅方法簡介,<https://zh.wikipedia.org/wiki/蒙地卡羅方法> 存取時間:2017年05月26日。
[21]A.E. Motter and Y.C. Lai, “Cascade-based attacks on complex networks,” Phys. Rev, E 66, 065102:1-4, 2002.
[22]R.C. Marti, S. Valverde, and R.V. Sole, “Topological vulnerability of the European power grid under errors and attacks,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 17(7):1-14, 2007.
[23]S.V. Buldyrev, R. Parshani, G. Paul, H.E. Stanley, and S. Havlin. Catastrophic cascade of failures in interdependent networks. Nature, 08932:1025-1028, 2010.
[24]E. Zio and G. Sansavini. Component Criticality in failure cascade processes of network systems. Risk Analysis, 0272-4332:1196-1210, 2011.
[25]P. Crucitti, V. Latora, and M. Marchiori. Model for cascading failures in complex networks. Physical Review, 1539-3755:1-4, 2004.
[26]B.A. Carreras, I. Dobson, D.E. Newman, and V. E. Lynch. Critical points and transitions in an electric power transmission model for cascading failure blackouts. Chaos, 1054-1500:985-994, 2002.
[27]D. Bienstock. Optimal control of cascading power grid failures. 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), 61284-799:2166-2173, 2011.
[28]I. Dobson, B.A. Carreras, V.E. Lynch, and D.E. Newman. An initial model for complex dynamics in electric power system blackouts. IEEE, Hawaii International Conference on System Sciences, 7695-0981:1-9, 2001.
[29]L. Galbusera, G. Theodoridis, and G. Giannopoulos. Model predictive control of energy transmission grids accounting for Power-ICT interdependencies. 22nd Mediterranean Conference on Control and Automation (MED), 4799-5901:835-840, 2014.
[30]鑫威資訊.“蒙地卡羅法要跑多少次模擬才能夠讓你的結果是比較準確的?”<http://simware.blogspot.tw/2015/03/blog-post.html>
[31]觀測資料查詢系統.
<http://e-service.cwb.gov.tw/HistoryDataQuery>
[32]張智星. MATLAB程式設計:入門篇, 986-80131-2-7,2004
[33]Christie RD. Power systems test case archive. Department of Electrical Engineering, University of Washington. <http://www2.ee.washington.edu/research/pstca/>
[34]台灣電力公司.計畫性工作停電查詢 <http://www.taipower.com.tw/content/announcement/ann01.aspx?BType=2>
[35]MATPOWER <http://www.pserc.cornell.edu/matpower/>
[36]G. Andersson, P. Donalek, R. Farmer, N. Hatziargyriou, I. Kamwa, P. Kundur, N. Martins, J. Paserba, P. Pourbeik, J. Sanchez-Gasca, R. Schulz, A. Stankovic, C. Taylor, and V. Vitt. Causes of the 2003 major grid blackouts in NorthAmerica and Europe, and recommended means to improve system dynamic performance. IEEE, Transactions Power Systems, 0885-8950:1922-1928, 2005.
[37]K. Van den Bergh, E. Delarue, and W. D’ Haeseleer. DC power flow in unit commitment models. TME Working Paper – Energy and Environment, WP EN 2014-12:2-36, 2014.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊