Altshuler, D. L., Dudley, R., & Ellington, C. P. (2004). Aerodynamic forces of revolving hummingbird wings and wing models. Journal of Zoology, 264(4), 327-332.
ANSYS Fluent UDF Manual, Release 15.0, ANSYS, Inc., November 2013.
ANSYS Fluent Theory Guide, Release 15.0, ANSYS, Inc., November 2013.
Aono, H. & Liu, H. (2008). A numerical study of hovering aerodynamics in flapping insect flight. in Bio-Mechanisms of Swimming and Flying. Tokyo, Japan: Springer Press.
Aono, H., Shyy, W., & Liu, H. (2009). Near wake vortex dynamics of a hovering hawkmoth. Acta Mechanica Sinica, 25(1), 23-36.
Aono, H., Liang, F., & Liu, H. (2008). Near-and far-field aerodynamics in insect hovering flight: an integrated computational study. Journal of Experimental Biology, 211(2), 239-257.
Birch, J. M., Dickson, W. B., & Dickinson, M. H. (2004). Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers. Journal of Experimental Biology, 207(7), 1063-1072.
Birch, J. M., & Dickinson, M. H. (2001). Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature, 412(6848), 729-733.
Birch, J. M., Dickson, W. B., & Dickinson, M. H. (2004). Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers. Journal of Experimental Biology, 207(7), 1063-1072.
Bomphrey, R. J. (2012). Advances in animal flight aerodynamics through flow measurement. Evolutionary Biology, 39(1), 1-11.
Chen, S. Y., Fei, Y. H. J., Chen, Y. C., Chi, K. J., & Yang, J. T. (2016). The swimming patterns and energy-saving mechanism revealed from three fish in a school. Ocean Engineering, 122, 22-31.
Chin, D. D., & Lentink, D. (2016). Flapping wing aerodynamics: from insects to vertebrates. Journal of Experimental Biology, 219(7), 920-932.
Christophe E. (2012). Optimal Strouhal number for swimming animals. Journal of Fluids and Structures, 30, 205-218.
Combes, S. A. & Daniel T. L. (2003). Flexural stiffness in insect wings I. Scaling and the influence of wing venation. Journal of Experimental Biology, 206(17), 2979-2987.
Dabiri, J. O. (2005). On the estimation of swimming and flying forces from wake measurements. Journal of Experimental Biology, 208(18), 3519-3532.
de Croon, G. C., Groen, M. A., De Wagter, C., Remes, B., Ruijsink, R., & van Oudheusden, B. W. (2012). Design, aerodynamics and autonomy of the DelFly. Bioinspiration & Biomimetics, 7(2), 025003.
Dickinson, M. H. (1996). Unsteady mechanisms of force generation in aquatic and aerial locomotion. American Zoologist, 36(6), 537-554.
Dickinson, M. H., Lehmann, F. O., & Sane, S. P. (1999). Wing rotation and the aerodynamic basis of insect flight. Science, 284(5422), 1954-1960.
Drucker, E. G., & Lauder, G. V. (1999). Locomotor forces on a swimming fish: three-dimensional vortex wake dynamics quantified using digital particle image velocimetry. Journal of Experimental Biology, 202(18), 2393-2412.
Du, G., & Sun, M. (2010). Effects of wing deformation on aerodynamic forces in hovering hoverflies. Journal of Experimental Biology, 213(13), 2273-2283.
Dudley, R. (1990). Biomechanics of flight in neotropical butterflies: morphometrics and kinematics. Journal of Experimental Biology, 150(1), 37-53.
Dudley, R. (2002). The Biomechanics of Insect Flight: Form, Function, Evolution. Princeton, NJ: Princeton University Press.
Dudley, R., & Srygley, R. (1994). Flight physiology of neotropical butterflies: allometry of airspeeds during natural free flight. Journal of Experimental Biology, 191(1), 125-139.
Ellington, C. P. (1984a). The aerodynamics of hovering insect flight. I. The quasi-steady analysis. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 305(1122), 1-15.
Ellington, C. P. (1984b). The aerodynamics of hovering insect flight. III. Kinematics. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 305(1122), 41-78.
Ellington, C. P. (1994). Unsteady aerodynamics of insect flight. Symposia of the Society for Experimental Biology, 49, 109-129.
Ellington, C. P., van Den Berg, C., Willmott, A. P., & Thomas, A. L. (1996). Leading-edge vortices in insect flight. Nature, 384, 626 - 630
Fuchiwaki, M., Kuroki, T., Tanaka, K., & Tababa, T. (2013). Dynamic behavior of the vortex ring formed on a butterfly wing. Experiments in Fluids, 54(1), 1-12.
Fei, Y. H. J., & Yang, J. T. (2015). Enhanced thrust and speed revealed in the forward flight of a butterfly with transient body translation. Physical Review E, 92(3), 033004.
Fei, Y. H. J., & Yang, J. T. (2016). Importance of body rotation during the flight of a butterfly. Physical Review E, 93(3), 033124.
Groen, M., Bruggeman, B., Remes, B., Ruijsink, R., Van Oudheusden, B. W., & Bijl, H. (2010). Improving flight performance of the flapping wing MAV DelFly II. Paper presented at International Micro Air Vehicle Conference and Competition, Braunschweig, Germany.
Guo, X., Chen, D., & Liu, H. (2015). Does a revolving wing stall at low Reynolds numbers? Journal of Biomechanical Science and Engineering, 10(4), 15-00588.
Heathcote, S., Wang, Z., & Gursul, I. (2008). Effect of spanwise flexibility on flapping wing propulsion. Journal of Fluids and Structures, 24(2), 183-199.
Ho, S., Nassef, H., Pornsinsirirak, N., Tai, Y. C., & Ho, C. M. (2003). Unsteady aerodynamics and flow control for flapping wing flyers. Progress in Aerospace Sciences, 39(8), 635-681.
Hunt, J. C., Wray, A. A., & Moin, P. (1988). Eddies, streams, and convergence zones in turbulent flows. Center for Turbulence Research, Proceeding of the Summer Program, 193-207.
Huang, H., & Sun, M. (2012). Forward flight of a model butterfly: Simulation by equations of motion coupled with the Navier-Stokes equations. Acta Mechanica Sinica, 28(6), 1590-1601.
Jeong, J., & Hussain, F. (1995). On the identification of a vortex. Journal of Fluid Mechanics, 285, 69-94.
Kang, C. K., & Shyy, W. (2013). Scaling law and enhancement of lift generation of an insect-size hovering flexible wing. Journal of the Royal Society Interface, 10(85), 20130361.
Kramer, M. (1932). Die Zunahme des Maximalauftriebes von Tragflugeln bei plotzlicher Anstellwinkelvergrosserung (Boeneffekt). Z. Flugtech. Motorluftschiff,. 23, 185-189.
Kawahara, A. Y., & Breinholt, J. W. (2014). Phylogenomics provides strong evidence for relationships of butterflies and moths. Proceedings of the Royal Society B: Biological Sciences, 281(1788), 0970.
Keennon, M., Klingebiel, K., Won, H., & Andriukov, A. (2012). Development of the nano hummingbird: A tailless flapping wing micro air vehicle. the AIAA Aerospace Sciences Meeting, VA, USA.
Kruyt, J. W., van Heijst, G. F., Altshuler, D. L., & Lentink, D. (2015). Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio. Journal of the Royal Society Interface, 12(105), 20150051.
Lentink, D., & Dickinson, M. H. (2009a). Biofluiddynamic scaling of flapping, spinning and translating fins and wings. Journal of Experimental Biology, 212(16), 2691-2704.
Lentink, D., & Dickinson, M. H. (2009b). Rotational accelerations stabilize leading edge vortices on revolving fly wings. Journal of Experimental Biology, 212(16), 2705-2719.
Lentink, D., Jongerius, S. R., & Bradshaw, N. L. (2009). The scalable design of flapping micro-air vehicles inspired by insect flight. in Flying Insects and Robots, 185-205. Verlag Berlin Heidelberg: Springer press.
Lehmann, F. O. (2008). When wings touch wakes: understanding locomotor force control by wake–wing interference in insect wings. Journal of Experimental Biology, 211(2), 224-233.
Lehmann, F. O., Sane, S. P., & Dickinson, M. (2005). The aerodynamic effects of wing-wing interaction in flapping insect wings. Journal of Experimental Biology, 208(16), 3075-3092.
Liu, H., & Kawachi, K. (1998). A numerical study of insect flight. Journal of Computational Physics, 146(1), 124-156.
Liu, H., Ellington, C. P., Kawachi, K., van den Berg, C., & Willmott, A. P. (1998). A computational fluid dynamic study of hawkmoth hovering. Journal of Experimental Biology, 201(4), 461-477.
Lin, T., Zheng, L., Hedrick, T., & Mittal, R. (2012). The significance of moment-of-inertia variation in flight manoeuvres of butterflies. Bioinspiration & Biomimetics, 7(4), 044002.
Lim, T. T., Teo, C. J., Lua, K. B., & Yeo, K. S. (2009). On the prolong attachment of leading edge vortex on a flapping wing. Modern Physics Letters B, 23(03), 357-360.
Lua, K. B., Lai, K. C., Lim, T. T., & Yeo, K. S. (2010). On the aerodynamic characteristics of hovering rigid and flexible hawkmoth-like wings. Experiments in Fluids, 49(6), 1263-1291.
Lua, K. B., Lim, T. T., & Yeo, K. S. (2011). Effect of wing-wake interaction on aerodynamic force generation on a 2D flapping wing. Experiments in Fluids, 51(1), 177-195.
Ma, K. Y., Chirarattananon, P., Fuller, S. B., & Wood, R. J. (2013). Controlled flight of a biologically inspired, insect-scale robot. Science, 340(6132), 603-607.
Marden, J. H., & Chai, P. (1991). Aerial predation and butterfly design: how palatability, mimicry, and the need for evasive flight constrain mass allocation. American Naturalist, 138(1), 15-36.
Misof, B., et al., (2014). Phylogenomics resolves the timing and pattern of insect evolution. Science, 346(6210), 763-767.
Mountcastle, A. M. & T. L. Daniel (2009). Aerodynamic and functional consequences of wing compliance. Experiments in Fluids, 46(5), 873-882.
Muijres, F. T., Spedding, G. R., Winter, Y., & Hedenström, A. (2011). Actuator disk model and span efficiency of flapping flight in bats based on time-resolved PIV measurements. Experiments in Fluids, 51(2), 511-525.
Muijres, F. T., Johansson, L. C., Barfield, R., Wolf, M., Spedding, G. R., & Hedenström, A. (2008). Leading-edge vortex improves lift in slow-flying bats. Science, 319(5867), 1250-1253.
Nakatani, Y., Suzuki, K., & Inamuro, T. (2016). Flight control simulations of a butterfly-like flapping wing-body model by the immersed boundary-lattice Boltzmann method. Computers & Fluids, 133, 103-115.
O’Farrell, C., & Dabiri, J. O. (2010). A Lagrangian approach to identifying vortex pinch-off Chaos: An Interdisciplinary Journal of Nonlinear. Science, 20(1), 017513.
Pines, D. J., & Bohorquez, F. (2006). Challenges facing future micro-air-vehicle development. Journal of Aircraft, 43(2), 290-305.
Phillips, N., Knowles, K., & Bomphrey, R. J. (2015). The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing. Bioinspiration & Biomimetics, 10(5), 056020.
Peng, J., Dabiri, J. O., Madden, P. G., & Lauder, G. V. (2007). Non-invasive measurement of instantaneous forces during aquatic locomotion: a case study of the bluegill sunfish pectoral fin. Journal of Experimental Biology, 210(4), 685-698.
Ramamurti, R., & Sandberg, W. C. (2002). A three-dimensional computational study of the aerodynamic mechanisms of insect flight. Journal of Experimental Biology, 205(10), 1507-1518.
Ramamurti, R., & Sandberg, W. C. (2007). A computational investigation of the three-dimensional unsteady aerodynamics of Drosophila hovering and maneuvering. Journal of Experimental Biology, 210(5), 881-896.
Ramasamy, M., & Leishman, J. G. (2006). Phase-locked particle image velocimetry measurements of a flapping wing. Journal of Aircraft, 43(6), 1867-1875.
Sane, S. P. (2003). The aerodynamics of insect flight. Journal of Experimental Biology, 206(23), 4191-4208.
Sane, S. P. (2006). Induced airflow in flying insects I. A theoretical model of the induced flow. Journal of Experimental Biology, 209(1), 32-42.
Sane, S. P., & Jacobson, N. P. (2006). Induced airflow in flying insects II. Measurement of induced flow. Journal of Experimental Biology, 209(1), 43-56.
Sane, S. P., & Dickinson, M. H. (2002). The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. Journal of Experimental Biology, 205(8), 1087-1096.
Sasaki, K., & Kiya, M. (1991). Three-dimensional vortex structure in a leading-edge separation bubble at moderate Reynolds numbers. Journal of Fluids Engineering, 113(3), 405-410.
Senda, K., Obara, T., Kitamura, M., Yokoyama, N., Hirai, N., & Iima, M. (2012). Effects of structural flexibility of wings in flapping flight of butterfly. Bioinspiration & Biomimetics, 7(2), 025002.
Senda, K., Obara, T., Kitamura, M., Nishikata, T., Hirai, N., Iima, M., & Yokoyama, N. (2012). Modeling and emergence of flapping flight of butterfly based on experimental measurements. Robotics and Autonomous Systems, 60(5), 670-678.
Shyy, W., Lian, Y., Tang, J., Liu, H., Trizila, P., Stanford, B., Trizila P., Stanford B., Bernal L., Cesnik C., Friedmann P., & Ifju, P. (2008). Computational aerodynamics of low Reynolds number plunging, pitching and flexible wings for MAV applications. Acta Mechanica Sinica, 24(4), 351-373.
Shyy, W., & Liu, H. (2007). Flapping wings and aerodynamic lift: the role of leading-edge vortices. AIAA Journal, 45(12), 2817-2819.
Shyy, W., Lian, Y., Tang, J., Viieru, D., & Liu, H. (2007). Aerodynamics of Low Reynolds Number Flyers. New York: Cambridge University Press,.
Shyy, W., Aono, H., Kang, C. K., & Liu, H. (2013). An Introduction to Flapping Wing Aerodynamics. New York: Cambridge University Press.
Srygley, R. B., & Thomas, A. L. R. (2002). Unconventional lift-generating mechanisms in free-flying butterflies. Nature, 420(6916), 660-664.
Srygley, R. B., & Chai, P. (1990). Flight morphology of Neotropical butterflies: palatability and distribution of mass to the thorax and abdomen. Oecologia, 84(4), 491-499.
Srygley, R. B., & Dudley, R. (1993). Correlations of the position of center of body mass with butterfly escape tactics. Journal of Experimental Biology, 174(1), 155-166.
Sunada, S., Kawachi, K., Watanabe, I., & Azuma, A. (1993). Performance of a butterfly in take-off flight. Journal of Experimental Biology, 183(1), 249-277.
Sun, M., & Tang, J. (2002). Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. Journal of Experimental Biology, 205(1), 55-70.
Suzuki, K., Minami, K., & Inamuro, T. (2015). Lift and thrust generation by a butterfly-like flapping wing-body model: immersed boundary-lattice Boltzmann simulations. Journal of Fluid Mechanics, 767, 659-695.
Su, J. Y., Ting, S. C., Chang, Y. H., & Yang, J. T. (2012). A passerine spreads its tail to facilitate a rapid recovery of its body posture during hovering. Journal of the Royal Society Interface, 9(72), 1674-1684.
Tanaka, H., & Shimoyama, I. (2010). Forward flight of swallowtail butterfly with simple flapping motion. Bioinspiration & Biomimetics, 5(2), 026003.
Takahashi, H., Tanaka, H., Matsumoto, K., & Shimoyama, I. (2012). Differential pressure distribution measurement with an MEMS sensor on a free-flying butterfly wing. Bioinspiration & Biomimetics, 7(3), 036020.
Taylor, G. K., Nudds, R. L., & Thomas, A. L. (2003). Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency. Nature, 425(6959), 707-711.
Tennekes, H. (2009). The Simple Science of Flight: from Insects to Jumbo Jets. Cambridge, Massachusetts London: MIT Press.
Ting, S. C., & Yang, J. T. (2009). Extracting energetically dominant flow features in a complicated fish wake using singular-value decomposition. Physics of Fluids, 21(4), 041901.
Usherwood, J. R., & Ellington, C. P. (2002a). The aerodynamics of revolving wings I. Model hawkmoth wings. Journal of Experimental Biology, 205(11), 1547-1564.
Usherwood, J. R., & Ellington, C. P. (2002b). The aerodynamics of revolving wings II. Propeller force coefficients from mayfly to quail. Journal of Experimental Biology, 205(11), 1565-1576.
van den Berg, C., & Ellington, C. P. (1997a). The vortex wake of a ‘hovering’ model hawkmoth. Philosophical Transactions of the Royal Society B: Biological Sciences, 352(1351), 317-328.
van den Berg, C., & Ellington, C. P. (1997b). The three–dimensional leading–edge vortex of a ‘hovering’model hawkmoth. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 352(1351), 329-340.
Van Truong, T., Le, T. Q., Tran, H. T., Park, H. C., Yoon, K. J., & Byun, D. (2012). Flow visualization of rhinoceros beetle (Trypoxylus dichotomus) in free flight. Journal of Bionic Engineering, 9(3), 304-314.
Weis-Fogh, T. (1973). Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. Journal of Experimental Biology, 59, 169-230.
Wang, J. K., & Sun, M. (2005). A computational study of the aerodynamics and forewing-hindwing interaction of a model dragonfly in forward flight. Journal of Experimental Biology, 208(19), 3785-3804.
Wang, Z. J., & Russell, D. (2007). Effect of forewing and hindwing interactions on aerodynamic forces and power in hovering dragonfly flight. Physical Review Letters, 99(14), 148101.
Warrick, D. R., Tobalske, B. W., & Powers, D. R. (2009). Lift production in the hovering hummingbird. Proceedings of the Royal Society of London B: Biological Sciences, 276(1674), 3747-3752.
Weisfogh, T. (1973). Quick estimates of flight fitness in hovering animals, Including novel mechanisms for lift production. Journal of Experimental Biology, 59, 169-230.
Willmott, A. P., & Ellington, C. P. (1997). The mechanics of flight in the hawkmoth Manduca sexta. I. Kinematics of hovering and forward flight. Journal of Experimental Biology, 200(21), 2705-2722.
Wood, R. J. (2008). The first takeoff of a biologically inspired at-scale robotic insect. IEEE transactions on robotics, 24(2), 341-347.
Young, J., Walker, S. M., Bomphrey, R. J., Taylor, G. K., & Thomas, A. L. (2009). Details of insect wing design and deformation enhance aerodynamic function and flight efficiency. Science, 325(5947), 1549-1552.
Yokoyama, N., Senda, K., Iima, M., & Hirai, N. (2013). Aerodynamic forces and vortical structures in flapping butterfly''s forward flight. Physics of Fluids, 25(2), 021902.
Yu, C. L., Ting, S. C., Yeh, M. K., & Yang, J. T. (2011). Three-dimensional numerical simulation of hydrodynamic interactions between pectoral-fin vortices and body undulation in a swimming fish. Physics of Fluids, 23(9), 091901.
Zheng, L., Hedrick, T. L., & Mittal, R. (2013). Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies. PloS One, 8(1), e53060.
Zhao, L., Huang, Q., Deng, X., & Sane, S. P. (2010). Aerodynamic effects of flexibility in flapping wings. Journal of the Royal Society Interface, 7(44), 485-497.
丁上杰 (2009)。魚類操控式游動之流體動力與生物物理學研究。清華大學動力機械工程學系博士論文,新竹市章聿珩 (2010)。運動學參數對鳥類拍撲翼之升力影響。臺灣大學機械工程學系暨研究所碩士論文,台北市蘇健元 (2013)。綠繡眼高操控性飛行之生物力學研究。臺灣大學機械工程學系暨研究所博士論文,台北市
王相博 (2013)。蝴蝶撲翼姿態對飛行影響之研究。臺灣大學機械工程學系暨研究所碩士論文,台北市陳思詠 (2013)。群游策略對於魚類游動性能節能之影響。臺灣大學機械工程學系暨研究所碩士論文,台北市黃佩儀 (2015)。綠繡眼飛行模式分析與仿鳥拍撲機構之設計。臺灣大學機械工程學系暨研究所碩士論文,台北市
王彥傑 (2016)。腹部動態對蝴蝶仿生飛行器控制之研究。臺灣大學機械工程學系暨研究所碩士論文,台北市張家瑜 (2016)。翅膀相位對豆娘拍撲飛行之影響。臺灣大學機械工程學系暨研究所碩士論文,台北市侯詞軒 (2016)。蝴蝶翼展尺寸對於飛行軌跡和姿態影響之研究。臺灣大學機械工程學系暨研究所碩士論文計畫書,台北市
李哲安 (2016)。翅膀後掠動態對蝴蝶拍撲飛行之影響。臺灣大學機械工程學系暨研究所碩士論文計畫書,台北市