跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:dbb8:8235:aad7:a019) 您好!臺灣時間:2024/12/08 05:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:費約翰
研究生(外文):Yueh-Han John Fei
論文名稱:蝴蝶身體俯仰動態之飛行動力機制與飛行操控研究
論文名稱(外文):Flying with Body Rotation: the Unique Flight Dynamics Revealed from Butterflies in Free Flight
指導教授:楊鏡堂楊鏡堂引用關係
口試委員:陳慶耀苗君易趙怡欽牛仰堯郭振華楊馥菱尤懷德王興華
口試日期:2017-01-23
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:150
中文關鍵詞:蝴蝶飛行自由飛行軌跡變化翅膀結構身體俯仰飛行操控
外文關鍵詞:butterfly flightrotation of bodycomputational fluid dynamicsirregular flight trajectoryflight maneuver
相關次數:
  • 被引用被引用:12
  • 點閱點閱:388
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
相較於其他飛行昆蟲,蝴蝶飛行伴隨明顯身體俯仰動態與飛行軌跡變化,本研建立蝴蝶飛行之數值模型,探討暫態飛行下蝴蝶特殊身體俯仰動態之氣動力學效果與特色,以及飛行時如運用身體俯仰動態進行飛行模式之調控。
蝴蝶飛行時,翅膀前後翅交疊大幅地限制翅膀旋轉之自由度,翅膀僅相對於身體軸進行往復之拍撲,且飛行時伴隨明顯之身體旋轉動作。透過數值模擬與流場可視化分析,結果顯示蝴蝶飛行時翅膀操縱在較高之攻角,其產生之翼後緣與翼前緣渦漩皆貼附在翅膀表面,分別於翅膀表面形成局部低壓區,提升單次拍撲所產生之空氣之作用力,進一步透過身體俯仰動態改變此作用力方向;此外,蝴蝶低展弦比翼型亦提升空氣作用力之產生及拍翅產所需之耗能,進一步提升飛行表現。由於此特殊空氣動力學產生方式,實驗中可觀察蝴蝶到飛行時明顯之軌跡變化與速度變化,因此本文進一步探討蝴蝶於暫態飛行下之空氣動力學效果。
為準確了解於暫態下之飛行,本研究透過計算空氣作用力與重力所造成之瞬間加速度建立蝴蝶於自由飛行之數值模擬。模擬結果顯示,蝴蝶於前飛之水平速度變化劇烈;水平速度於上拍結束達最大值(1.2 m s-1),此時翅膀交疊,使水平方向投影面積減小,以避免高速氣流帶來之飛行阻力;當下拍轉換上拍階段水平速度達最小值(0.2 m s-1),此時翅膀往返捕捉下拍所產生之誘導氣流,使產生之推進力提升,透過暫態氣流與翅膀動態之巧妙交互作用;相較於等速飛行條件,蝴蝶於暫態下之平均飛行速度提升47%。在過去昆蟲飛行研究中大多假設飛行速度為等速,然而,透過本研究發現此簡化可能導致低估昆蟲之飛行表現,甚至對其飛行給予錯誤之詮釋。
蝴蝶飛行時被觀察到伴隨明顯之俯仰動作,且身體之俯仰轉動隨飛行模式改變而有所不同,本文最後透過改變身體俯仰起始角度與擺動振幅,以觀察飛行時軌跡與流場隨俯仰動態改變之變化。研究結果顯示,水平位移量與起始身體角度之大小呈負相關,而垂直位移量與俯仰振幅大小呈正相關;此外,在身體角度垂直下,俯仰振幅對垂直位移之增益效果更加明顯,蝴蝶透過身體俯仰動態可有效達到飛行速度與飛行模式之調控。在飛行上,蝴蝶具備低拍撲頻率與優良操控等特色,為微飛行器設計上理想之參考對象,本文解釋蝴蝶如何透過特殊之身體俯仰姿態來強化空氣作用力之產生以及進行飛行調控,其可提供未來微飛行器操控策略設計上不同思維。
Flying with low wing beats, erratic trajectory and broad wings, the flight of butterfles is unique and different from most of flying insect. In our observation, the dancing-liked flight motion of butterflies can be attributed to two reasons -- unsteady flight speed and significant body pitching motion. These aerodynamic effects, however, were scarcely examined before. In this study, we create a numerical model of butterflies to investigate the aerodynamic and performance of their unique flight in transient conditions; the flight control strategy with the body pitching motion is also revealed.
Nature butterflies are observed flying with obvious body pitching motion but limited wing rotation, which is unlike the flight motion that observed in most of flying insect. Using numerical models with simplified geometry to compare the aerodynamic forces, power requirement and flow structure generated by the motions of typical insect and butterflies, we indicate that the difference of flight kinematics of butterflies leads to larger force generation. A butterfly operates its wings in a high angle of attack, and both of the leading edge and trailing edge vortices are observed attaching on the wing surface during flight. They provide two regions of low pressure on the wing surface, which enhance the net force generation. The low aspect ratio wings of butterflies is also found to enhance the flight performance of butterflies by increasing the force generation and reducing the aerodynamic power in each stroke.
The large aerodynamic force generation of butterflies increases their flight maneuverability, but also leads to the unstable flight trajectories and large variations of their flight speed. A three-dimensional model of a butterfly in transient flight is then created based on the experimental data. The fluid domain is solved with the commercial software (FLUENT), and the flight speed is solved with the equation of motion in each step by integrating the aerodynamic force and the body force acting on butterflies. The model translates freely both in vertical and horizontal directions.
The numerical results indicate that flight speed (1.2 m s-1 to 0.2 m s-1) largely variates in a stroke and nicely match with the values recorded from experiments. The butterfly wings clap to reduce the drag when the flight speed is high, and capture the induced wakes to increase thrust when the flight speed is low. The wing motion of a butterfly skillfully interacts with its transient flight speed and enables an increase of averaged speed by 47% compared with the model in the same motion but in a constant flight speed. The results indicate that a butterfly flies faster in transient conditions. Considering a butterfly flying in a constant inflow leads to an underestimation of its real speed, which might yield an inaccurate interpretation on the insect''s flight behavior.
Finally, we investigate how body postures affect butterflies’ flight. Body motion in a simulation is prescribed and parametrically tested by changing the initial body angle and rotational amplitude. The results indicate that vertical translation increases when the rotation amplitude increasing, and the horizontal translation decreases when the initial body angle increasing. The body motion of butterflies changes the direction of jet-flow, and further affects their flight modes. Butterflies’ body motion can effectively control the flight modes. In engineering perspective, low flapping frequency and highly maneuverable flight made the butterflies an ideal model for the small flight vehicle designing; therefore, the inspiration of the unique flight of a butterfly might yield an alternative way to control future small flight vehicles.
目錄
第一章 前言 1
第二章 文獻回顧 3
2-1.1 專有名詞介紹 4
2-1.2 昆蟲飛行與傳統空氣動力學(convection aerodynamic)之差異 6
2-1.3 飛行尺寸定律 (scaling law of flyers) 9
2-1. 5 飛行之空氣作用力 15
2-1.6 流體旋轉性之描述-渦度與環流量 16
2-1.8飛行、渦漩環與渦漩環理論(vortex theory) 19
2-1.9 Q判斷法(Q-criterion) 24
2-2昆蟲飛行力學 25
2-2.1 翼前緣渦漩貼附及其穩定性 26
2-2.4 翅膀旋轉動態(wing rotation) 34
2.2.6 昆蟲翅膀之交互作用 40
2-2.8 昆蟲翅膀之撓性(flexibility)與流固耦合 44
第三章 研究方法 60
3-1 實驗方法 61
3-1.1 研究物種 61
3-1.2 動作分析與飛行動態 62
3-1.3 蝴蝶飛行座標系與飛行動態定義 63
3-1.4 蝴蝶流場可視化 69
3-2 拍撲飛行數值模擬 72
3-2.1 計算流體力學軟體與用戶自定義函數介紹 72
3-2.2 網格與動態網格 73
3-2.3 拍撲角度與身體俯仰座標轉換 77
3-2.4 流體求解器設置 79
3-3 數值模型設定 81
3-3.1 枯葉蝶數值模型 81
3-3.2 數值模擬蝴蝶飛行動態與飛行動態調控 82
3-3.3 自由飛行速度計算描述 84
3-3.4 數值結果驗證 86
第四章 身體俯仰飛行與翅膀旋轉飛行之空氣動力學比較 90
4-1 昆蟲翅膀旋轉與身體俯仰動態簡化數值模型 91
4-2 翅膀旋轉與身體俯仰動態比較. 93
4-2.1 翅膀旋轉與身體俯仰動態空氣作用力產生比較 94
4-2.2 不同飛行動態與翅膀展弦比對垂直力係數與效率之影響 96
4-2.3 身體俯仰與翅膀旋轉昆蟲流場結構 97
4-2.4 蝴蝶身體俯仰機制討論 104
第五章 暫態飛行速度與翅膀動態之交互作用 106
5-1.1 實驗量測速度變化 106
5-1.2 自由飛行數值模型與定速飛行數值模型設定 108
5-1.3 自身推進數值模擬 108
5-1.4 自身推進與定速飛行比較 110
5-1.5 翅膀與暫態飛行速度之交互作用 114
第六章 蝴蝶身體俯仰與飛行操控 118
6-1.1 自由飛行數值模型 118
6-1.2 自由飛行速度與流場結構 119
6-1.3 自由飛行速度與流場結構 120
6-1.4 蝴蝶身體俯仰變化與身體軌跡之變化 121
6-1.5 身體俯仰對流場之影響 126
6-1.6 身體姿態與軌跡變化之交互作用 126
第七章 結論與未來展望 130
7-1 結論 130
7-2 未來展望 132
第八章 參考文獻 134
第九章 作者簡歷 147
Altshuler, D. L., Dudley, R., & Ellington, C. P. (2004). Aerodynamic forces of revolving hummingbird wings and wing models. Journal of Zoology, 264(4), 327-332.
ANSYS Fluent UDF Manual, Release 15.0, ANSYS, Inc., November 2013.
ANSYS Fluent Theory Guide, Release 15.0, ANSYS, Inc., November 2013.
Aono, H. & Liu, H. (2008). A numerical study of hovering aerodynamics in flapping insect flight. in Bio-Mechanisms of Swimming and Flying. Tokyo, Japan: Springer Press.
Aono, H., Shyy, W., & Liu, H. (2009). Near wake vortex dynamics of a hovering hawkmoth. Acta Mechanica Sinica, 25(1), 23-36.
Aono, H., Liang, F., & Liu, H. (2008). Near-and far-field aerodynamics in insect hovering flight: an integrated computational study. Journal of Experimental Biology, 211(2), 239-257.
Birch, J. M., Dickson, W. B., & Dickinson, M. H. (2004). Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers. Journal of Experimental Biology, 207(7), 1063-1072.
Birch, J. M., & Dickinson, M. H. (2001). Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature, 412(6848), 729-733.
Birch, J. M., Dickson, W. B., & Dickinson, M. H. (2004). Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers. Journal of Experimental Biology, 207(7), 1063-1072.
Bomphrey, R. J. (2012). Advances in animal flight aerodynamics through flow measurement. Evolutionary Biology, 39(1), 1-11.
Chen, S. Y., Fei, Y. H. J., Chen, Y. C., Chi, K. J., & Yang, J. T. (2016). The swimming patterns and energy-saving mechanism revealed from three fish in a school. Ocean Engineering, 122, 22-31.
Chin, D. D., & Lentink, D. (2016). Flapping wing aerodynamics: from insects to vertebrates. Journal of Experimental Biology, 219(7), 920-932.
Christophe E. (2012). Optimal Strouhal number for swimming animals. Journal of Fluids and Structures, 30, 205-218.
Combes, S. A. & Daniel T. L. (2003). Flexural stiffness in insect wings I. Scaling and the influence of wing venation. Journal of Experimental Biology, 206(17), 2979-2987.
Dabiri, J. O. (2005). On the estimation of swimming and flying forces from wake measurements. Journal of Experimental Biology, 208(18), 3519-3532.
de Croon, G. C., Groen, M. A., De Wagter, C., Remes, B., Ruijsink, R., & van Oudheusden, B. W. (2012). Design, aerodynamics and autonomy of the DelFly. Bioinspiration & Biomimetics, 7(2), 025003.
Dickinson, M. H. (1996). Unsteady mechanisms of force generation in aquatic and aerial locomotion. American Zoologist, 36(6), 537-554.
Dickinson, M. H., Lehmann, F. O., & Sane, S. P. (1999). Wing rotation and the aerodynamic basis of insect flight. Science, 284(5422), 1954-1960.
Drucker, E. G., & Lauder, G. V. (1999). Locomotor forces on a swimming fish: three-dimensional vortex wake dynamics quantified using digital particle image velocimetry. Journal of Experimental Biology, 202(18), 2393-2412.
Du, G., & Sun, M. (2010). Effects of wing deformation on aerodynamic forces in hovering hoverflies. Journal of Experimental Biology, 213(13), 2273-2283.
Dudley, R. (1990). Biomechanics of flight in neotropical butterflies: morphometrics and kinematics. Journal of Experimental Biology, 150(1), 37-53.
Dudley, R. (2002). The Biomechanics of Insect Flight: Form, Function, Evolution. Princeton, NJ: Princeton University Press.
Dudley, R., & Srygley, R. (1994). Flight physiology of neotropical butterflies: allometry of airspeeds during natural free flight. Journal of Experimental Biology, 191(1), 125-139.
Ellington, C. P. (1984a). The aerodynamics of hovering insect flight. I. The quasi-steady analysis. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 305(1122), 1-15.
Ellington, C. P. (1984b). The aerodynamics of hovering insect flight. III. Kinematics. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 305(1122), 41-78.
Ellington, C. P. (1994). Unsteady aerodynamics of insect flight. Symposia of the Society for Experimental Biology, 49, 109-129.
Ellington, C. P., van Den Berg, C., Willmott, A. P., & Thomas, A. L. (1996). Leading-edge vortices in insect flight. Nature, 384, 626 - 630
Fuchiwaki, M., Kuroki, T., Tanaka, K., & Tababa, T. (2013). Dynamic behavior of the vortex ring formed on a butterfly wing. Experiments in Fluids, 54(1), 1-12.
Fei, Y. H. J., & Yang, J. T. (2015). Enhanced thrust and speed revealed in the forward flight of a butterfly with transient body translation. Physical Review E, 92(3), 033004.
Fei, Y. H. J., & Yang, J. T. (2016). Importance of body rotation during the flight of a butterfly. Physical Review E, 93(3), 033124.
Groen, M., Bruggeman, B., Remes, B., Ruijsink, R., Van Oudheusden, B. W., & Bijl, H. (2010). Improving flight performance of the flapping wing MAV DelFly II. Paper presented at International Micro Air Vehicle Conference and Competition, Braunschweig, Germany.
Guo, X., Chen, D., & Liu, H. (2015). Does a revolving wing stall at low Reynolds numbers? Journal of Biomechanical Science and Engineering, 10(4), 15-00588.
Heathcote, S., Wang, Z., & Gursul, I. (2008). Effect of spanwise flexibility on flapping wing propulsion. Journal of Fluids and Structures, 24(2), 183-199.
Ho, S., Nassef, H., Pornsinsirirak, N., Tai, Y. C., & Ho, C. M. (2003). Unsteady aerodynamics and flow control for flapping wing flyers. Progress in Aerospace Sciences, 39(8), 635-681.
Hunt, J. C., Wray, A. A., & Moin, P. (1988). Eddies, streams, and convergence zones in turbulent flows. Center for Turbulence Research, Proceeding of the Summer Program, 193-207.
Huang, H., & Sun, M. (2012). Forward flight of a model butterfly: Simulation by equations of motion coupled with the Navier-Stokes equations. Acta Mechanica Sinica, 28(6), 1590-1601.
Jeong, J., & Hussain, F. (1995). On the identification of a vortex. Journal of Fluid Mechanics, 285, 69-94.
Kang, C. K., & Shyy, W. (2013). Scaling law and enhancement of lift generation of an insect-size hovering flexible wing. Journal of the Royal Society Interface, 10(85), 20130361.
Kramer, M. (1932). Die Zunahme des Maximalauftriebes von Tragflugeln bei plotzlicher Anstellwinkelvergrosserung (Boeneffekt). Z. Flugtech. Motorluftschiff,. 23, 185-189.
Kawahara, A. Y., & Breinholt, J. W. (2014). Phylogenomics provides strong evidence for relationships of butterflies and moths. Proceedings of the Royal Society B: Biological Sciences, 281(1788), 0970.
Keennon, M., Klingebiel, K., Won, H., & Andriukov, A. (2012). Development of the nano hummingbird: A tailless flapping wing micro air vehicle. the AIAA Aerospace Sciences Meeting, VA, USA.
Kruyt, J. W., van Heijst, G. F., Altshuler, D. L., & Lentink, D. (2015). Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio. Journal of the Royal Society Interface, 12(105), 20150051.
Lentink, D., & Dickinson, M. H. (2009a). Biofluiddynamic scaling of flapping, spinning and translating fins and wings. Journal of Experimental Biology, 212(16), 2691-2704.
Lentink, D., & Dickinson, M. H. (2009b). Rotational accelerations stabilize leading edge vortices on revolving fly wings. Journal of Experimental Biology, 212(16), 2705-2719.
Lentink, D., Jongerius, S. R., & Bradshaw, N. L. (2009). The scalable design of flapping micro-air vehicles inspired by insect flight. in Flying Insects and Robots, 185-205. Verlag Berlin Heidelberg: Springer press.
Lehmann, F. O. (2008). When wings touch wakes: understanding locomotor force control by wake–wing interference in insect wings. Journal of Experimental Biology, 211(2), 224-233.
Lehmann, F. O., Sane, S. P., & Dickinson, M. (2005). The aerodynamic effects of wing-wing interaction in flapping insect wings. Journal of Experimental Biology, 208(16), 3075-3092.
Liu, H., & Kawachi, K. (1998). A numerical study of insect flight. Journal of Computational Physics, 146(1), 124-156.
Liu, H., Ellington, C. P., Kawachi, K., van den Berg, C., & Willmott, A. P. (1998). A computational fluid dynamic study of hawkmoth hovering. Journal of Experimental Biology, 201(4), 461-477.
Lin, T., Zheng, L., Hedrick, T., & Mittal, R. (2012). The significance of moment-of-inertia variation in flight manoeuvres of butterflies. Bioinspiration & Biomimetics, 7(4), 044002.
Lim, T. T., Teo, C. J., Lua, K. B., & Yeo, K. S. (2009). On the prolong attachment of leading edge vortex on a flapping wing. Modern Physics Letters B, 23(03), 357-360.
Lua, K. B., Lai, K. C., Lim, T. T., & Yeo, K. S. (2010). On the aerodynamic characteristics of hovering rigid and flexible hawkmoth-like wings. Experiments in Fluids, 49(6), 1263-1291.
Lua, K. B., Lim, T. T., & Yeo, K. S. (2011). Effect of wing-wake interaction on aerodynamic force generation on a 2D flapping wing. Experiments in Fluids, 51(1), 177-195.
Ma, K. Y., Chirarattananon, P., Fuller, S. B., & Wood, R. J. (2013). Controlled flight of a biologically inspired, insect-scale robot. Science, 340(6132), 603-607.
Marden, J. H., & Chai, P. (1991). Aerial predation and butterfly design: how palatability, mimicry, and the need for evasive flight constrain mass allocation. American Naturalist, 138(1), 15-36.
Misof, B., et al., (2014). Phylogenomics resolves the timing and pattern of insect evolution. Science, 346(6210), 763-767.
Mountcastle, A. M. & T. L. Daniel (2009). Aerodynamic and functional consequences of wing compliance. Experiments in Fluids, 46(5), 873-882.
Muijres, F. T., Spedding, G. R., Winter, Y., & Hedenström, A. (2011). Actuator disk model and span efficiency of flapping flight in bats based on time-resolved PIV measurements. Experiments in Fluids, 51(2), 511-525.
Muijres, F. T., Johansson, L. C., Barfield, R., Wolf, M., Spedding, G. R., & Hedenström, A. (2008). Leading-edge vortex improves lift in slow-flying bats. Science, 319(5867), 1250-1253.
Nakatani, Y., Suzuki, K., & Inamuro, T. (2016). Flight control simulations of a butterfly-like flapping wing-body model by the immersed boundary-lattice Boltzmann method. Computers & Fluids, 133, 103-115.
O’Farrell, C., & Dabiri, J. O. (2010). A Lagrangian approach to identifying vortex pinch-off Chaos: An Interdisciplinary Journal of Nonlinear. Science, 20(1), 017513.
Pines, D. J., & Bohorquez, F. (2006). Challenges facing future micro-air-vehicle development. Journal of Aircraft, 43(2), 290-305.
Phillips, N., Knowles, K., & Bomphrey, R. J. (2015). The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing. Bioinspiration & Biomimetics, 10(5), 056020.
Peng, J., Dabiri, J. O., Madden, P. G., & Lauder, G. V. (2007). Non-invasive measurement of instantaneous forces during aquatic locomotion: a case study of the bluegill sunfish pectoral fin. Journal of Experimental Biology, 210(4), 685-698.
Ramamurti, R., & Sandberg, W. C. (2002). A three-dimensional computational study of the aerodynamic mechanisms of insect flight. Journal of Experimental Biology, 205(10), 1507-1518.
Ramamurti, R., & Sandberg, W. C. (2007). A computational investigation of the three-dimensional unsteady aerodynamics of Drosophila hovering and maneuvering. Journal of Experimental Biology, 210(5), 881-896.
Ramasamy, M., & Leishman, J. G. (2006). Phase-locked particle image velocimetry measurements of a flapping wing. Journal of Aircraft, 43(6), 1867-1875.
Sane, S. P. (2003). The aerodynamics of insect flight. Journal of Experimental Biology, 206(23), 4191-4208.
Sane, S. P. (2006). Induced airflow in flying insects I. A theoretical model of the induced flow. Journal of Experimental Biology, 209(1), 32-42.
Sane, S. P., & Jacobson, N. P. (2006). Induced airflow in flying insects II. Measurement of induced flow. Journal of Experimental Biology, 209(1), 43-56.
Sane, S. P., & Dickinson, M. H. (2002). The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. Journal of Experimental Biology, 205(8), 1087-1096.
Sasaki, K., & Kiya, M. (1991). Three-dimensional vortex structure in a leading-edge separation bubble at moderate Reynolds numbers. Journal of Fluids Engineering, 113(3), 405-410.
Senda, K., Obara, T., Kitamura, M., Yokoyama, N., Hirai, N., & Iima, M. (2012). Effects of structural flexibility of wings in flapping flight of butterfly. Bioinspiration & Biomimetics, 7(2), 025002.
Senda, K., Obara, T., Kitamura, M., Nishikata, T., Hirai, N., Iima, M., & Yokoyama, N. (2012). Modeling and emergence of flapping flight of butterfly based on experimental measurements. Robotics and Autonomous Systems, 60(5), 670-678.
Shyy, W., Lian, Y., Tang, J., Liu, H., Trizila, P., Stanford, B., Trizila P., Stanford B., Bernal L., Cesnik C., Friedmann P., & Ifju, P. (2008). Computational aerodynamics of low Reynolds number plunging, pitching and flexible wings for MAV applications. Acta Mechanica Sinica, 24(4), 351-373.
Shyy, W., & Liu, H. (2007). Flapping wings and aerodynamic lift: the role of leading-edge vortices. AIAA Journal, 45(12), 2817-2819.
Shyy, W., Lian, Y., Tang, J., Viieru, D., & Liu, H. (2007). Aerodynamics of Low Reynolds Number Flyers. New York: Cambridge University Press,.
Shyy, W., Aono, H., Kang, C. K., & Liu, H. (2013). An Introduction to Flapping Wing Aerodynamics. New York: Cambridge University Press.
Srygley, R. B., & Thomas, A. L. R. (2002). Unconventional lift-generating mechanisms in free-flying butterflies. Nature, 420(6916), 660-664.
Srygley, R. B., & Chai, P. (1990). Flight morphology of Neotropical butterflies: palatability and distribution of mass to the thorax and abdomen. Oecologia, 84(4), 491-499.
Srygley, R. B., & Dudley, R. (1993). Correlations of the position of center of body mass with butterfly escape tactics. Journal of Experimental Biology, 174(1), 155-166.
Sunada, S., Kawachi, K., Watanabe, I., & Azuma, A. (1993). Performance of a butterfly in take-off flight. Journal of Experimental Biology, 183(1), 249-277.
Sun, M., & Tang, J. (2002). Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. Journal of Experimental Biology, 205(1), 55-70.
Suzuki, K., Minami, K., & Inamuro, T. (2015). Lift and thrust generation by a butterfly-like flapping wing-body model: immersed boundary-lattice Boltzmann simulations. Journal of Fluid Mechanics, 767, 659-695.
Su, J. Y., Ting, S. C., Chang, Y. H., & Yang, J. T. (2012). A passerine spreads its tail to facilitate a rapid recovery of its body posture during hovering. Journal of the Royal Society Interface, 9(72), 1674-1684.
Tanaka, H., & Shimoyama, I. (2010). Forward flight of swallowtail butterfly with simple flapping motion. Bioinspiration & Biomimetics, 5(2), 026003.
Takahashi, H., Tanaka, H., Matsumoto, K., & Shimoyama, I. (2012). Differential pressure distribution measurement with an MEMS sensor on a free-flying butterfly wing. Bioinspiration & Biomimetics, 7(3), 036020.
Taylor, G. K., Nudds, R. L., & Thomas, A. L. (2003). Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency. Nature, 425(6959), 707-711.
Tennekes, H. (2009). The Simple Science of Flight: from Insects to Jumbo Jets. Cambridge, Massachusetts London: MIT Press.
Ting, S. C., & Yang, J. T. (2009). Extracting energetically dominant flow features in a complicated fish wake using singular-value decomposition. Physics of Fluids, 21(4), 041901.
Usherwood, J. R., & Ellington, C. P. (2002a). The aerodynamics of revolving wings I. Model hawkmoth wings. Journal of Experimental Biology, 205(11), 1547-1564.
Usherwood, J. R., & Ellington, C. P. (2002b). The aerodynamics of revolving wings II. Propeller force coefficients from mayfly to quail. Journal of Experimental Biology, 205(11), 1565-1576.
van den Berg, C., & Ellington, C. P. (1997a). The vortex wake of a ‘hovering’ model hawkmoth. Philosophical Transactions of the Royal Society B: Biological Sciences, 352(1351), 317-328.
van den Berg, C., & Ellington, C. P. (1997b). The three–dimensional leading–edge vortex of a ‘hovering’model hawkmoth. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 352(1351), 329-340.
Van Truong, T., Le, T. Q., Tran, H. T., Park, H. C., Yoon, K. J., & Byun, D. (2012). Flow visualization of rhinoceros beetle (Trypoxylus dichotomus) in free flight. Journal of Bionic Engineering, 9(3), 304-314.
Weis-Fogh, T. (1973). Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. Journal of Experimental Biology, 59, 169-230.
Wang, J. K., & Sun, M. (2005). A computational study of the aerodynamics and forewing-hindwing interaction of a model dragonfly in forward flight. Journal of Experimental Biology, 208(19), 3785-3804.
Wang, Z. J., & Russell, D. (2007). Effect of forewing and hindwing interactions on aerodynamic forces and power in hovering dragonfly flight. Physical Review Letters, 99(14), 148101.
Warrick, D. R., Tobalske, B. W., & Powers, D. R. (2009). Lift production in the hovering hummingbird. Proceedings of the Royal Society of London B: Biological Sciences, 276(1674), 3747-3752.
Weisfogh, T. (1973). Quick estimates of flight fitness in hovering animals, Including novel mechanisms for lift production. Journal of Experimental Biology, 59, 169-230.
Willmott, A. P., & Ellington, C. P. (1997). The mechanics of flight in the hawkmoth Manduca sexta. I. Kinematics of hovering and forward flight. Journal of Experimental Biology, 200(21), 2705-2722.
Wood, R. J. (2008). The first takeoff of a biologically inspired at-scale robotic insect. IEEE transactions on robotics, 24(2), 341-347.
Young, J., Walker, S. M., Bomphrey, R. J., Taylor, G. K., & Thomas, A. L. (2009). Details of insect wing design and deformation enhance aerodynamic function and flight efficiency. Science, 325(5947), 1549-1552.
Yokoyama, N., Senda, K., Iima, M., & Hirai, N. (2013). Aerodynamic forces and vortical structures in flapping butterfly''s forward flight. Physics of Fluids, 25(2), 021902.
Yu, C. L., Ting, S. C., Yeh, M. K., & Yang, J. T. (2011). Three-dimensional numerical simulation of hydrodynamic interactions between pectoral-fin vortices and body undulation in a swimming fish. Physics of Fluids, 23(9), 091901.
Zheng, L., Hedrick, T. L., & Mittal, R. (2013). Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies. PloS One, 8(1), e53060.
Zhao, L., Huang, Q., Deng, X., & Sane, S. P. (2010). Aerodynamic effects of flexibility in flapping wings. Journal of the Royal Society Interface, 7(44), 485-497.
丁上杰 (2009)。魚類操控式游動之流體動力與生物物理學研究。清華大學動力機械工程學系博士論文,新竹市
章聿珩 (2010)。運動學參數對鳥類拍撲翼之升力影響。臺灣大學機械工程學系暨研究所碩士論文,台北市
蘇健元 (2013)。綠繡眼高操控性飛行之生物力學研究。臺灣大學機械工程學系暨研究所博士論文,台北市
王相博 (2013)。蝴蝶撲翼姿態對飛行影響之研究。臺灣大學機械工程學系暨研究所碩士論文,台北市
陳思詠 (2013)。群游策略對於魚類游動性能節能之影響。臺灣大學機械工程學系暨研究所碩士論文,台北市
黃佩儀 (2015)。綠繡眼飛行模式分析與仿鳥拍撲機構之設計。臺灣大學機械工程學系暨研究所碩士論文,台北市
王彥傑 (2016)。腹部動態對蝴蝶仿生飛行器控制之研究。臺灣大學機械工程學系暨研究所碩士論文,台北市
張家瑜 (2016)。翅膀相位對豆娘拍撲飛行之影響。臺灣大學機械工程學系暨研究所碩士論文,台北市
侯詞軒 (2016)。蝴蝶翼展尺寸對於飛行軌跡和姿態影響之研究。臺灣大學機械工程學系暨研究所碩士論文計畫書,台北市
李哲安 (2016)。翅膀後掠動態對蝴蝶拍撲飛行之影響。臺灣大學機械工程學系暨研究所碩士論文計畫書,台北市
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top