跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/25 23:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許立翰
研究生(外文):Li-Han Hsu
論文名稱:主動式液氣懸吊系統於八輪車輛之連通拓樸及性能分析
論文名稱(外文):Analysis and Topology of Active Hydro-Pneumatic Suspension Systems on Eight-Wheeled Vehicles
指導教授:蘇偉儁
指導教授(外文):Wei-Jiun Su
口試日期:2017-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:100
中文關鍵詞:液氣懸吊懸吊剛性調配穩定度轉向性能氣體彈簧連通八輪載具
外文關鍵詞:hydropneumatic suspensionspring coefficient deploymentstabilityhandlingair-spring interconnectedeight-wheel vehicle
相關次數:
  • 被引用被引用:3
  • 點閱點閱:227
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究為探討不同懸吊剛性的調配,對轉彎中的車輛的穩定度及轉向性能的影響做評估。首先吾人先利用車輛各座標軸之力平衡與力矩平衡分析,建立出車輛之動態數學模型,由車輛數學模型可得不同懸吊剛性下之車輛運動動態特性,並利用側向負載轉移係數LTR及最佳轉向性能指標J來分別評估車輛行駛時的穩定度及操縱性。本研究以輸入前輪轉向角進行模擬,並假設側向負載轉移係數之絕對值為1時,即為單邊車輪之正向力和為零,單邊車輪皆離地時作為車體穩定度最低之指標,側向負載轉移係數之絕對值越小即車體穩定度越高;而車輛之最佳轉向性能指標越小,車體越容易達到欲達到之理想軌跡,轉向性能即越強。上述兩種即為判斷穩定度及轉向性能之方法。再探討車輛懸吊系統之剛性、氣體的調配及連通,對車輛穩定度及轉向性能的影響,並找出最適當之調配方法,使得車輛有較高的行駛穩定度及轉向性能。
The purpose of this research is to investigate the relationship between the spring coefficient of the suspension and the dynamic stability and handling of a vehicle during cornering. First, we use the basic dynamic principle to compute the dynamic equations of the vehicle. The equations of motion of the system are used to observe the vehicle dynamic characteristics for different spring coefficients of the suspension. We use lateral load transfer ratio to evaluate the dynamic stability and optimal handling performance index of the vehicle to evaluate the handling. In this research, the cornering angle of the front four wheels is applied to simulate. It is assumed that the absolute value of lateral load transfer ratio equals to 1, which represents that the sum of the normal force of the four wheels in one side equals to zero. In this situation, the four wheels are all lift-off and it represents the lowest dynamic stability. The smaller absolute value of lateral load transfer ratio represents the higher dynamic stability of the vehicle. The smaller the optimal handling performance index of the vehicle is, the easier the vehicle reaches the desired track. The most suitable spring coefficients are obtained to achieve o high stability and handling for the vehicle during cornering.
口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 viii
表目錄 xiii
符號彙整 xv
Chapter 1 緒論 1
1.1 前言 1
1.2 文獻回顧 1
1.2.1 液氣式懸吊系統及性能評估 1
1.2.2 改善車輛行駛穩定性及操控性 2
1.3 研究動機與目的 4
1.4 研究方法與步驟 4
Chapter 2 理論基礎 6
2.1 車輛座標系統 6
2.2 輪胎模型 6
2.2.1 輪胎座標系統定義 7
2.2.2 輪胎所受的力與力矩 7
2.2.3 輪胎轉向力計算 8
2.2.4 側傾力與外傾角 10
2.3 液氣懸吊剛性 10
2.3.1 獨立式與連通式懸吊之剛性差異 11
2.3.2 獨立式氣體彈簧模型 12
2.3.3 連通式氣體彈簧模型 15
Chapter 3 八輪車輛動態數學模型 18
3.1 假設條件 18
3.2 Magic Formula輪胎模型 19
3.3 車輛模型 22
3.4 運動方程式 23
3.4.1 傳統線性螺旋彈簧懸吊系統 26
3.4.2 液氣乘載之非線性氣體彈簧懸吊系統 34
Chapter 4 車輛過彎之模擬與分析 44
4.1 數值方法及求解過程 44
4.2 J-Turn模擬過彎 46
4.3 模擬結果 48
4.3.1 傳統線性螺旋彈簧懸吊系統 49
4.3.2 液氣懸吊之非線性氣體彈簧懸吊系統 54
4.3.3 線性彈簧懸吊系統與非線性氣體彈簧懸吊系統比較 61
Chapter 5 懸吊特性對穩定度影響 64
5.1 穩定度評估方式 64
5.2 八輪車輛車體參數對車輛動態穩定度影響 65
5.2.1 不同車體速度對車輛動態穩定度影響 66
5.2.2 不同前輪轉向角對車輛動態穩定度影響 67
5.3 懸吊剛性調配方式及穩定度分析 69
5.3.1 調配傳統線性螺旋彈簧之彈簧係數 69
5.3.2 調配非線性氣體彈簧 72
5.4 懸吊連通拓樸與剛性分析 78
5.4.1 連通穩定度初步評估方式 78
5.4.2 八氣缸系統拓樸圖 79
5.4.3 四氣缸系統拓樸圖 79
5.4.4 二氣缸系統拓樸圖 82
5.4.5 剛性分析 83
5.5 懸吊連通對車輛動態穩定度影響 85
Chapter 6 懸吊特性對車輛轉向性能影響 88
6.1 車輛轉向性能評估方式 88
6.2 八輪車輛車體參數對車輛轉向性能之影響 89
6.2.1 不同車體速度對車輛動態穩定度影響 89
6.2.2 不同前輪轉向角對車輛動態穩定度影響 90
6.2.3 調配傳統線性螺旋彈簧之彈簧係數 91
6.2.4 調配非線性氣體彈簧 92
6.3 懸吊連通對車輛轉向性能之影響 94
Chapter 7 結論 95
7.1 結論 95
7.2 未來展望 96
參考文獻 98
[1]“Kaller.com.” [Online]. Available: http://www.kaller.com/.
[2]G.Xu, N.Zhang, H.Roser, andJ.Ruan, “Tyre Load Analysis of Hydro-Pneumatic Interconnected Suspension with Zero Warp Suspension Stiffness,” SAE Technical Paper, pp. 2015-01–0630, 2015.
[3]X.Shao, H.Du, andF.Naghdy, “Enhanced Vehicle Handling and Ride through Anti-Pitch Anti-Roll Hydraulically Interconnected Suspension,” SAE Technical Paper, pp. 2016-01–1561, 2016.
[4]L.Wang, N.Zhang, andH.Du, “Experimental Investigation of a Hydraulically Interconnected Suspension in Vehicle Dynamics and Stability Control,” SAE Technical Paper, vol. 5, no. 2, pp. 759–768, 2012.
[5]H.Hua, L.Wang, H.Qi, J.Zhang, andN.Zhang, “Implementation and Experimental Study of a Novel Air Spring Combined with Hydraulically Interconnected Suspension to Enhance Roll Stiffness on Buses,” SAE Technical Paper, pp. 2015-01–0652, 2015.
[6]B.-C.Chen andH.Peng, “Rollover Warning for Articulated Heavy Vehicles Based on a Time-to-Rollover Metric,” Journal of Dynamic Systems, Measurement, and Control, vol. 127, no. 3, pp. 406–414, 2005.
[7]B.Zhu, Q.Piao, J.Zhao, andL.Guo, “Integrated chassis control for vehicle rollover prevention with neural network time-to-rollover warning metrics,” Advances in Mechanical Engineering, vol. 8, no. 2, pp. 1–13, 2016.
[8]A. Y.Lee, “Coordinated Control of Steering and Anti-Roll Bars to Alter Vehicle Rollover Tendencies,” Journal of Dynamic Systems, Measurement, and Control, vol. 124, no. 1, pp. 127–132, 2002.
[9]P.Gáspár, Z.Szabó, J.Bokor, andB.Nemeth, Robust Control Design for Active Driver Assistance Systems. Springer International Publishing switzerland, 2016.
[10]T. J.Wielenga andM. A.Chace, “A Study in Rollover Prevention Using Anti-Rollover Braking,” SAE Technical Paper, no. 2000-01–1642, 2000.
[11]L.Li, Y.Lu, R.Wang, andJ.Chen, “A 3-Dimentional Dynamics Control Framework of Vehicle Lateral Stability and Rollover Prevention via Active Braking with MPC,” IEEE Transactions on Industrial Electronics, vol. 64, no. 4, pp. 3389–3401, 2017.
[12]B.-C.Chen andH.Peng, “Differential-Braking-Based Rollover Prevention for Sport Utility Vehicleswith Human-in-the-loop Evaluations,” Vehicle System Dynamics, vol. 36, no. 4–5, pp. 359–389, 2001.
[13]S.Yim, Y.Park, andK.Yi, “Design of Active Suspension and Electronic Stability Program for Rollover Prevention,” International Journal of Automotive Technology, vol. 11, no. 2, pp. 147–153, 2010.
[14]J.Storms andD.Tilbury, “Dynamic Weight-Shifting for Improved Maneuverability and Rollover Prevention in High-Speed Mobile Manipulators,” Journal of Dynamic Systems, Measurement, and Control, vol. 138, p. 101007, 2016.
[15]P.Gaspar, I.Szaszi, andJ.Bokor, “The Design of a Combined Control Structure to Prevent the Rollover of Heavy Vehicles,” European Journal of Control, vol. 10, pp. 148–162, 2004.
[16]D.Odenthal, T.Bünte, andJ.Ackermann, “Nonlinear steering and braking control for vehicle rollover avoidance,” in Proceedings of European Control Conference, 1999, pp. 598–603.
[17]S.Mammar andV. B.Baghdassarian, “Two-degree-of-freedom Formulation of Vehicle Handling Improvement by Active Steering,” in Proceedings of the American Control Conference Chicago, Illinois, 2000, pp. 105–109.
[18]S.Mammar andD.Koenig, “Vehicle Handling Improvement by Active Steering,” Vehicle System Dynamics, vol. 38, no. 3, pp. 211–242, 2002.
[19]E.Esmailzadeh, A.Goodarzi, andG. R.Vossoughi, “Optimal yaw moment control law for improved vehicle handling,” Mechatronics, vol. 13, no. 7, pp. 659–675, 2003.
[20]K. M.Aripin, M. Y.Sam, K. A.Danapalasingam, K.Peng, N.Hamzah, andM. F.Ismail, “A Review of Active Yaw Control System for Vehicle Handling and Stability Enhancement,” International Journal of Vehicular Technology, vol. 2014, 2014.
[21]Y.Feldman, “Vehicle Anti-Rollover System,” U.S. patent 6,938,924, 2005.
[22]T. H. E.United andS.Of, “Sign Convention for Vehicle Crash Testing,” 1998.
[23]J. Y.Wong, Theory of ground Vehicles, 3rd ed. John Wiley & Sons, Inc., 2001.
[24]H. B.Pacejka andE.Bakker, “The Magic Formula Tyre Model,” Vehicle System Dynamics, vol. 21, no. sup001, pp. 1–18, 1992.
[25]Tony Jackson andS.Mark L. Bardenwerper, “Revised Summary of Citroën Hydraulic Fluids.” [Online]. Available: http://citroen.cappyfabrics.com/tony.html.
[26]“Fluide LDS.” [Online]. Available: http://www.lubadmin.com/upload/produit/FichePDF/lang_1/4008.pdf.
[27]J.Balla, “Dynamics of mounted automatic cannon on track vehicle,” International Journal of Mathematical Models and Methods in Applied Sciences, vol. 5, no. 3, pp. 423–432, 2011.
[28]J.Balla, Z.Krist, andC. I.Le, “Experimental Investigation of Weapon System Mounted on Track Vehicle,” in Proceedings of the 16th International Conference on Mathematical Methods, Computational Techniques and Intelligent Systems (MAMECTIS ’14), 2014, pp. 166–172.
[29]林国问, 马大为, and朱忠领, “基于多轴连通式油气悬架的导弹发射车振动性能研究,” Journal of Vibration and Shock, vol. 32, no. 12, pp. 144–149, 2013.
[30]賈召敏, 曹兵, 張云波, and李文博, “Vibration of a Rocket Artillery with Hyd- ropneumatic Vehicle Suspension,” Fire Control & Command Control, vol. 40, no. 11, pp. 163–166, 2015.
[31]Z.You, Y.Fan, andS.Tao, “Simulation of Nonlinear Hydropneumatic Suspension for Comfort,” Journal of System Simulation, vol. 21, no. 10, pp. 157–160, 2004.
[32]D.Cao, S.Rakheja, andC.-Y.Su, “Roll- and pitch-plane coupled hydro-pneumatic suspension. Part 1: Feasibility analysis and suspension properties,” Vehicle System Dynamics, vol. 48, no. 3, pp. 361–386, 2010.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top