(3.238.7.202) 您好!臺灣時間:2021/03/04 02:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃宏奕
研究生(外文):Hong-Yi Huang
論文名稱:摩擦電能量收集元件內表面圓頂型微奈米結構之綜合研究分析
論文名稱(外文):Comprehensive Analysis of Interfacial Micro Dome Structure in Triboelectric Energy Harvester
指導教授:廖洺漢
口試委員:陳勝吉李敏鴻
口試日期:2017-06-21
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:66
中文關鍵詞:曝光微影乾蝕刻濕蝕刻金字塔陣列翻模圓頂型陣列摩擦電層摩擦電能量收集元件飽和壓力開路電壓短路電流
外文關鍵詞:trench pyramid arrayphotolithographydry etchingwet etchingPDMSreplica-modelingpyramid arraytriboelectric layertriboelectric energy harvester (TEH)saturation pressureopen-circuit voltageshort-circuit current
相關次數:
  • 被引用被引用:0
  • 點閱點閱:66
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中利用曝光微影技術(photolithography)和乾濕蝕刻(dry and wet etching)做出金字塔凹槽陣列矽基板之後,透過對聚二甲基矽氧烷(polydimethylsioxane, PDMS)翻模,可在PDMS表面形成金字塔陣列結構,以及利用曝光微影技術(photolithography)、乾蝕刻(dry and etching)和電漿輔助化學氣相沈積(plasma enhanced chemical vapor deposition)做出圓頂型陣列矽基板之後,透過對聚二甲基矽氧烷(polydimethylsioxane, PDMS)翻模,可在PDMS表面形成圓頂型凹槽陣列結構,接續對圓頂型凹槽陣列結構進行二次翻模,可得到在PDMS表面形成圓頂型陣列結構,並將兩種不同形狀的PDMS作為摩擦電層(triboelectric layer),同時再利用電子鎗真空蒸鍍系統在矽基板鍍上銀(Ag)作為上下金屬電極,而上電極同時也作為摩擦電層,將其組裝後,製做出摩擦電能量收集元件(triboelectric energy harvester, TEH)。在PDMS摩擦電層中,製作了兩種不同形狀的摩擦電層(triboelectric layer),第一種為底邊圓直徑尺寸的圓頂型陣列:22μm,其圓頂型間距為10μm,第二種為底邊長尺寸的金字塔型陣列:20μm,其金字塔間距為10μm。當圓頂型與金字塔型做量測比較時,並給予相同且未達飽和的壓力(saturation pressure)時,圓頂型元件量到的開路電壓(open-circuit voltage)和短路電流(short-circuit current)會大於金字塔型元件,因此,透過改變表面形狀的方式,可得到較佳的電壓及電流輸出。
In this thesis, we made the silicon substrate with the trench pyramid array on the surface by the ways of photolithography, dry etching, and wet etching. After the replica-modeling process, pyramid array structures could be formed on the interfacial layer of PDMS, and the use of exposure photolithography, dry and etching and plasma enhanced chemical vapor deposition to make a dome array silicon substrate, PDMS surface to form a dome-shaped groove array structure, continuous dome-shaped groove array structure of the second mold, can be formed in the PDMS surface dome array structure, and two different shapes of PDMS as a triboelectric layer, while the use of Electron gun vacuum evaporation system in the silicon substrate plating silver as the upper and lower metal electrodes, and the upper electrode as a triboelectric layer, will be assembled to make a triboelectric energy harvester (TEH). In the PDMS triboelectric layer, two different types of triboelectric layers were fabricated. The first is a dome-shaped array with a bottom-diameter diameter: 22 μm, a dome-type pitch of 10 μm, a second the pyramid-shaped array with a long side of the base is 20 μm and its pyramid spacing is 10 μm. When the dome type is compared with the pyramid type and the same saturation pressure is given, the open-circuit voltage and the short-circuit current of the dome type component Current will be greater than the pyramid-type components, therefore, by changing the surface shape of the way, can be a better voltage and current output.
國立台灣大學碩士學位論文切結書 i
口試委員會審定書 ii
致謝 iii
中文摘要 iv
ABSTRACT v
目錄 vi
圖目錄 viii
表目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 研究背景與動機 2
1.3 論文架構 6
第二章 文獻回顧與理論基礎 8
2.1 歷史發展 8
2.2 摩擦電效應 10
2.3 國際發展現況 12
2.4 研究目的 14
第三章 理論計算與分析 16
3.1 金字塔型結構與圓頂型結構之接觸面積計算與分析 16
3.2 金字塔型與圓頂型之開路電壓與施加壓力的關係 19
3.3 分析結論 27
第四章 實驗方法與量測架設 28
4.1 實驗流程設計 28
4.2 基板製備 29
4.3 金字塔型PDMS製備 30
4.3.1 PDMS之製程方式 30
4.3.2 二氧化矽之薄膜沉積 31
4.3.3 曝光顯影 32
4.3.4 乾蝕刻 36
4.3.5 濕蝕刻 37
4.3.6 金字塔型之PDMS翻模 40
4.4 圓頂型PDMS製備 43
4.4.1 二氧化矽之薄膜沉積 43
4.4.2 曝光顯影 44
4.4.3 乾蝕刻 46
4.4.4 二氧化矽沉積 46
4.4.5 PDMS翻模 47
4.4.6 磁控濺鍍系統 47
4.4.7 PDMS二次翻模 49
4.5 電極製備 50
4.6 元件組裝 51
4.7 量測方法與架設 53
4.7.1 開路電壓(Open-Circuit Voltage) 53
4.7.2 短路電流(Short-Circuit Current) 54
4.7.3 量測架設與方法 54
第五章 實驗結果與討論 56
第六章 總結 61
參考文獻 62
[1]Zhong Lin Wang, “Nanogenerators for self-powered devices and systems”, Georgia Institute of Technology, SMARTech digital repository, 2011.
[2]Jacques and Pierre Curie, "Développement par compression de l''électricité polaire dans les cristaux hémièdres à faces inclinées" (Development, via compression, of electric polarization in hemihedral crystals with inclined faces), Bulletin de la Société minérologique de France, Vol. 3, p. 90-93, 1880. Reprinted in: Jacques and Pierre Curie, “Développement, par pression, de l''électricité polaire dans les cristaux hémièdres à faces inclinées," Comptes rendus, Vol. 91, p. 294-295, 1880. See also: Jacques and Pierre Curie, "Sur l''électricité polaire dans les cristaux hémièdres à faces inclinées" (On electric polarization in hemihedral crystals with inclined faces), Comptes rendus, Vol. 91, p. 383-386, 1880.
[3]Lippmann, G., "Principe de la conservation de l''électricité". Annales de chimie et de physique (in French), Vol. 24, p. 145, 1881.
[4]Jacques and Pierre Curie "Contractions et dilatations produites par des tensions dans les cristaux hémièdres à faces inclinées" (Contractions and expansions produced by voltages in hemihedral crystals with inclined faces), Comptes rendus, Vol. 93, p. 1137-1140, 1881.
[5]Z.L. Wang, J.H. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science, Vol. 312, p. 242-246, 2006.
[6]X.D. Wang, J.H. Song, J. Liu, and Z.L. Wang, “Direct-current nanogenerator driven by ultrasonic waves,” Science, Vol. 316, p. 102-105, 2007.
[7]Y. Qin, X.D. Wang, and Z.L. Wang, “Microfibre-nanowire hybrid structure for energy scavenging,” Nature, Vol. 451, p. 809-813, 2008.
[8]R.S. Yang, Y. Qin, L.M. Dai, and Z.L. Wang, “Power generation with laterally packaged piezoelectric fine wires,” Nature Nanotechnology, Vol. 4, p. 34-39, 2009.
[9]Y. Qi, N.T. Jafferis, K. Lyons, C.M. Lee, H. Ahmad, and M.C. McAlpine, “Piezoelectric ribbons printed onto rubber for flexible energy conversion,” Nano Letters, Vol. 10, p. 524-528, 2010.
[10]C. Chang, V.H. Tran, J. Wang, Y.-K. Fuh, and L. Lin, “Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency,” Nano Letters, Vol. 10, p. 726-731, 2010.
[11]S.N. Cha, J.-S. Seo, S.M. Kim, H.J. Kim, Y.J. Park, S.-W. Kim, and J.M. Kim, “Sound-driven piezoelectric nanowire-based nanogenerators,” Advanced Materials, Vol. 22, p. 4726-4730, 2010.
[12]D. Choi, M.-Y. Choi, W.M. Choi, H.-J. Shin, H.-K. Park, J.-S. Seo, J. Park, S.J. Chae, Y.H. Lee, S.-W. Kim, J.-Y. Choi, S.Y. Lee, and J.M. Kim, “Fully rollable transparent nanogenerators Based on graphene Electrodes,” Advanced Materials, Vol. 22, p. 2187-2192, 2010.
[13]F.-R. Fan, Z.-Q. Tian, and Z. L. Wang, “Flexible triboelectric generator,” Nano Energy, Vol. 1, p. 328-334, 2012.
[14]Johan Carl Wilcke, “Disputatio physica experimentalis, de electricitatibus contrariis,” Typis Ioannis Iacobi Adleri, 1757.
[15]Z.L. Wang, “Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors,” ACS Nano, Vol. 7, p. 9533-9557, 2013.
[16]F.-R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang, and Z. L. Wang, “Transparent Triboelectric Nanogenerators and self-powered pressure sensors based on micropatterned plastic films,” Nano Letters, Vol. 12, p. 3109-3114, 2012.
[17]G. Zhu, C. Pan, W. Guo, C.-Y. Chen, Y. Zhou, R. Yu, and Z.-L. Wang, “Triboelectric-generator-driven pulse electrodeposition for micropatterning,” Nano Letters, Vol. 12, p. 4960-4965, 2012.
[18]S. Wang, L. Long, and Z.-L. Wang, “Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics,” Nano Letters, Vol. 12, p. 6339-6346, 2012.
[19]M.-L. Seol, J.-W, Han, J.-H. Woo, D.-I. Moon, J.-Y. Kim, and Y.-K. Choi, “Comprehensive analysis of deformation of interfacial micro-nano structure by applied force in triboelectric energy harvester,” 60th IEEE International Electron Device Meeting (IEDM), p.8.3.1-8.3.4, 2014.
[20]M.-L. Seol, J.-H. Woo, D.-I. Lee, H. Im, J. Hur, and Y.-K. Choi, “Nature-replicated nano-in-micro structures for triboelectric energy harvesting,” small, Vol. 10, p. 3887-3894, 2014.
[21]M.-L. Seol, S.-H. Lee, J.-H. Woo, D. Kim, G.-H. Cho, and Y.-K. Choi, “Impact of contact pressure on output voltage of triboelectric nanogenerator based on deformation of interfacial structures,” Nano Energy, Vol. 17, p.63-71, 2015.
[22]D. Kim, J. Kim, H. C Park, K.-H. Lee, and W. Hwang, “A superhydrophobic dual-scale engineered lotus leaf,” J. Micromech. Microeng. Vol. 18, p. 15-19, 2008.
[23]J.A. Roger, K.E. Paul, R. J. Jackman and G. M. Whitesides, “Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field,” Applied Physics Letters, Vol. 70, p. 2658, 1997.
[24]K.E. Paul, M. Prentiss, and G.M. Whitesides, “Patterning spherical surfaces at the two-hundred-nanometer scale using soft lithography,” Adv. Funct. Mater. Vol. 13, p. 259, 2003.
[25]M. A. Lieberman and A. J. Lichtenberg, “Principles of plasma discharges and materials processing,” John Wiley & Sons, Inc, 2005.
[26]K.E. Paul, M. Prentiss, and G.M. Whitesides, “Patterning spherical surfaces at the two-hundred-nanometer scale using soft lithography,” Adv. Funct. Mater. Vol. 13, p. 259-263, 2003.
[27]I. Zubel and M. Kramkowska, “The effect of alcohol additives on etching characteristics in KOH solution”, Sensors and Actuators A: Physical, Vol. 101, p.255-261, 2002.
[28]P.J. Holmes, “The electrochemistry of semiconductors”, Academic press, 1962.
[29]H. Seidel, L. Csepregi, A. Heuberger, and H. BaumgSrtel, “Anisotropic etching of crystalline silicon in alkaline solutions”, J. Electrochem. Soc., Vol. 137, 1990.
[30]H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, “Anisotropic etching of crystalline silicon in alkaline solution-part I. Orientation dependence and behavior of passivation layer”, J.Electrochem. Soc., Vol. 137, p.3612, 1990.
[31]H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, “Anisoropic etching of crystalline silicon in alkaline solution-part II. Influence of dopants”,J. Electrochem. Soc. Vol. 137, p. 3626, 1990.
[32]M. Quirk, and J. Serda, “Semiconductor manufacturing technology”, Prentice Hall, p. 443, 2001.
[33]D. B. Lee, “Anisotropic etching of silicon”, J. Appl. Phys., Vol. 40, p. 4569-4547, 1969.
[34]P. J. Hesketh, C. Ju, and S. Gowda, “Surface free energy model of silicon anisotropic etching”, J. Electrochem. Soc., Vol. 140, p. 1080-1085, 1993.
[35]M. Shikida, K. Sato, K. Tokoro, and D. Uchikawa “Differences in anisotropic etching properties of KOH and TMAH solutions”, Sensors and Actuators A: Physical, Vol. 80, p. 179-188, 2000.
[36]H. Hassanin, A. Mohammadkhani, and K. Jiang, "Fabrication of hybrid nanostructured arrays using a PDMS/PDMS replication process," Lab on a Chip, 10.1039/C2LC40512A vol. 12, no. 20, pp. 4160-4167, 2012.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔