|
[1]Zhong Lin Wang, “Nanogenerators for self-powered devices and systems”, Georgia Institute of Technology, SMARTech digital repository, 2011. [2]Jacques and Pierre Curie, "Développement par compression de l''électricité polaire dans les cristaux hémièdres à faces inclinées" (Development, via compression, of electric polarization in hemihedral crystals with inclined faces), Bulletin de la Société minérologique de France, Vol. 3, p. 90-93, 1880. Reprinted in: Jacques and Pierre Curie, “Développement, par pression, de l''électricité polaire dans les cristaux hémièdres à faces inclinées," Comptes rendus, Vol. 91, p. 294-295, 1880. See also: Jacques and Pierre Curie, "Sur l''électricité polaire dans les cristaux hémièdres à faces inclinées" (On electric polarization in hemihedral crystals with inclined faces), Comptes rendus, Vol. 91, p. 383-386, 1880. [3]Lippmann, G., "Principe de la conservation de l''électricité". Annales de chimie et de physique (in French), Vol. 24, p. 145, 1881. [4]Jacques and Pierre Curie "Contractions et dilatations produites par des tensions dans les cristaux hémièdres à faces inclinées" (Contractions and expansions produced by voltages in hemihedral crystals with inclined faces), Comptes rendus, Vol. 93, p. 1137-1140, 1881. [5]Z.L. Wang, J.H. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science, Vol. 312, p. 242-246, 2006. [6]X.D. Wang, J.H. Song, J. Liu, and Z.L. Wang, “Direct-current nanogenerator driven by ultrasonic waves,” Science, Vol. 316, p. 102-105, 2007. [7]Y. Qin, X.D. Wang, and Z.L. Wang, “Microfibre-nanowire hybrid structure for energy scavenging,” Nature, Vol. 451, p. 809-813, 2008. [8]R.S. Yang, Y. Qin, L.M. Dai, and Z.L. Wang, “Power generation with laterally packaged piezoelectric fine wires,” Nature Nanotechnology, Vol. 4, p. 34-39, 2009. [9]Y. Qi, N.T. Jafferis, K. Lyons, C.M. Lee, H. Ahmad, and M.C. McAlpine, “Piezoelectric ribbons printed onto rubber for flexible energy conversion,” Nano Letters, Vol. 10, p. 524-528, 2010. [10]C. Chang, V.H. Tran, J. Wang, Y.-K. Fuh, and L. Lin, “Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency,” Nano Letters, Vol. 10, p. 726-731, 2010. [11]S.N. Cha, J.-S. Seo, S.M. Kim, H.J. Kim, Y.J. Park, S.-W. Kim, and J.M. Kim, “Sound-driven piezoelectric nanowire-based nanogenerators,” Advanced Materials, Vol. 22, p. 4726-4730, 2010. [12]D. Choi, M.-Y. Choi, W.M. Choi, H.-J. Shin, H.-K. Park, J.-S. Seo, J. Park, S.J. Chae, Y.H. Lee, S.-W. Kim, J.-Y. Choi, S.Y. Lee, and J.M. Kim, “Fully rollable transparent nanogenerators Based on graphene Electrodes,” Advanced Materials, Vol. 22, p. 2187-2192, 2010. [13]F.-R. Fan, Z.-Q. Tian, and Z. L. Wang, “Flexible triboelectric generator,” Nano Energy, Vol. 1, p. 328-334, 2012. [14]Johan Carl Wilcke, “Disputatio physica experimentalis, de electricitatibus contrariis,” Typis Ioannis Iacobi Adleri, 1757. [15]Z.L. Wang, “Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors,” ACS Nano, Vol. 7, p. 9533-9557, 2013. [16]F.-R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang, and Z. L. Wang, “Transparent Triboelectric Nanogenerators and self-powered pressure sensors based on micropatterned plastic films,” Nano Letters, Vol. 12, p. 3109-3114, 2012. [17]G. Zhu, C. Pan, W. Guo, C.-Y. Chen, Y. Zhou, R. Yu, and Z.-L. Wang, “Triboelectric-generator-driven pulse electrodeposition for micropatterning,” Nano Letters, Vol. 12, p. 4960-4965, 2012. [18]S. Wang, L. Long, and Z.-L. Wang, “Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics,” Nano Letters, Vol. 12, p. 6339-6346, 2012. [19]M.-L. Seol, J.-W, Han, J.-H. Woo, D.-I. Moon, J.-Y. Kim, and Y.-K. Choi, “Comprehensive analysis of deformation of interfacial micro-nano structure by applied force in triboelectric energy harvester,” 60th IEEE International Electron Device Meeting (IEDM), p.8.3.1-8.3.4, 2014. [20]M.-L. Seol, J.-H. Woo, D.-I. Lee, H. Im, J. Hur, and Y.-K. Choi, “Nature-replicated nano-in-micro structures for triboelectric energy harvesting,” small, Vol. 10, p. 3887-3894, 2014. [21]M.-L. Seol, S.-H. Lee, J.-H. Woo, D. Kim, G.-H. Cho, and Y.-K. Choi, “Impact of contact pressure on output voltage of triboelectric nanogenerator based on deformation of interfacial structures,” Nano Energy, Vol. 17, p.63-71, 2015. [22]D. Kim, J. Kim, H. C Park, K.-H. Lee, and W. Hwang, “A superhydrophobic dual-scale engineered lotus leaf,” J. Micromech. Microeng. Vol. 18, p. 15-19, 2008. [23]J.A. Roger, K.E. Paul, R. J. Jackman and G. M. Whitesides, “Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field,” Applied Physics Letters, Vol. 70, p. 2658, 1997. [24]K.E. Paul, M. Prentiss, and G.M. Whitesides, “Patterning spherical surfaces at the two-hundred-nanometer scale using soft lithography,” Adv. Funct. Mater. Vol. 13, p. 259, 2003. [25]M. A. Lieberman and A. J. Lichtenberg, “Principles of plasma discharges and materials processing,” John Wiley & Sons, Inc, 2005. [26]K.E. Paul, M. Prentiss, and G.M. Whitesides, “Patterning spherical surfaces at the two-hundred-nanometer scale using soft lithography,” Adv. Funct. Mater. Vol. 13, p. 259-263, 2003. [27]I. Zubel and M. Kramkowska, “The effect of alcohol additives on etching characteristics in KOH solution”, Sensors and Actuators A: Physical, Vol. 101, p.255-261, 2002. [28]P.J. Holmes, “The electrochemistry of semiconductors”, Academic press, 1962. [29]H. Seidel, L. Csepregi, A. Heuberger, and H. BaumgSrtel, “Anisotropic etching of crystalline silicon in alkaline solutions”, J. Electrochem. Soc., Vol. 137, 1990. [30]H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, “Anisotropic etching of crystalline silicon in alkaline solution-part I. Orientation dependence and behavior of passivation layer”, J.Electrochem. Soc., Vol. 137, p.3612, 1990. [31]H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, “Anisoropic etching of crystalline silicon in alkaline solution-part II. Influence of dopants”,J. Electrochem. Soc. Vol. 137, p. 3626, 1990. [32]M. Quirk, and J. Serda, “Semiconductor manufacturing technology”, Prentice Hall, p. 443, 2001. [33]D. B. Lee, “Anisotropic etching of silicon”, J. Appl. Phys., Vol. 40, p. 4569-4547, 1969. [34]P. J. Hesketh, C. Ju, and S. Gowda, “Surface free energy model of silicon anisotropic etching”, J. Electrochem. Soc., Vol. 140, p. 1080-1085, 1993. [35]M. Shikida, K. Sato, K. Tokoro, and D. Uchikawa “Differences in anisotropic etching properties of KOH and TMAH solutions”, Sensors and Actuators A: Physical, Vol. 80, p. 179-188, 2000. [36]H. Hassanin, A. Mohammadkhani, and K. Jiang, "Fabrication of hybrid nanostructured arrays using a PDMS/PDMS replication process," Lab on a Chip, 10.1039/C2LC40512A vol. 12, no. 20, pp. 4160-4167, 2012.
|