跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/20 11:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:侯天祐
研究生(外文):Tian-You Hou
論文名稱:人形機器人的虛擬阻抗控制與零空間動作控制
論文名稱(外文):Virtual Impedance Control and Null Space Motion Control for Humanoid Robots
指導教授:黃漢邦黃漢邦引用關係
指導教授(外文):Han-Pang Huang
口試日期:2017-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:68
中文關鍵詞:人形機器人穩定控制器虛擬阻抗控制梯度投影法零空間動作控制
外文關鍵詞:Humanoid RobotStabilizerVirtual Impedance ControlGradient Projection MethodNull Space Motion Control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:190
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
虛擬阻抗控制可以用於避障、避免自身關節角度超過最大限制以及防止自身碰撞等方面。本文結合虛擬阻抗控制與最大輸出允許集合,提出在虛擬阻抗控制架構下的平衡控制器,使人行機器人在行走時的穩定性獲得保證,同時能夠達成避障及防碰撞的功能。這種控制器透過計算最大輸出允許集合,適時改變虛擬阻抗控制的控制係數,使腳底的ZMP在行走過程中不會超出限制範圍,因而保證人形機器人不會跌倒。
另外,本文也使用梯度投影法,在虛擬阻抗控制的零空間內對有多餘自由度的人形機器人進行動作控制,透過不同成本函數使得人形機器人能夠在達成主要任務的前提下,同時滿足次要任務的需求。
Virtual impedance control can be used to avoid obstacles, joint limits, and self-collisions. In this thesis, we propose a stabilizer that uses virtual impedance control and maximal output admissible (MOA) sets to guarantee balance stability and execute other functions simultaneously while walking. This stabilizer ensures that the zero moment point (ZMP) does not exceed the constraints by changing the gains of virtual impedance control after computing the MOA sets so that the humanoid robot will not fall.
Furthermore, we use the gradient projection method to control the motion of the humanoid robot in the null space of virtual impedance control. This enables us to execute subtasks while the main tasks are completed through different cost functions.
Contents
誌謝 i
摘要 iii
Abstract v
List of Tables xi
List of Figures xiii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Background Knowledge 2
1.3 Contributions 3
1.4 Framework 5
Chapter 2 Pattern Generation 7
2.1 Introduction 7
2.2 Pattern Generator 8
2.2.1 Inverted Pendulum Model 8
2.2.2 Linear Quadratic State-Incremental Control 10
2.3 COG State Estimator 12
2.3.1 System Model 14
2.3.2 Sensor Model 15
2.4 Summary 18
Chapter 3 Virtual Impedance Control 19
3.1 Introduction 19
3.2 Risk Function and Boundary Layer 20
3.2.1 Risk Function 20
3.2.2 Virtual Impedance Control and Boundary Layer 22
3.3 Stabilizer 24
3.3.1 Relation of Virtual Impedance Control and LIPM 26
3.3.2 Maximal Output Admissible Sets 28
3.3.3 Stability of the Stabilizer 30
3.4 Main Tasks 34
3.5 Summary 35
Chapter 4 Multiple Priority 36
4.1 Introduction 36
4.2 Null Space Motion Control 37
4.2.1 Gradient Projection Method 37
4.2.2 Cost Functions 39
4.3 Summary 39
Chapter 5 Experiments 40
5.1 Specification of the NTU Humanoid Robot 40
5.2 Experiment Scenarios and Results 41
5.2.1 Standing with External Force 41
5.2.2 Walking with External Force 44
5.2.3 Self-motion for Maintaining Postures 47
5.2.4 Obstacle Avoidance when Walking 50
5.3 Summary 55
Chapter 6 Conclusions and Future Works 57
6.1 Conclusions 57
6.2 Future Works 58
References 59
References
[1]Gurobi Optimizer Reference Manual. Retrieved 24 June, 2016, from http://www.gurobi.com
[2](2016). The Next Generation of Boston Dynamics'' Atlas Robot Is Quiet, Robust, and Tether Free. from http://spectrum.ieee.org/automaton/robotics/humanoids/next-generation-of-boston-dynamics-atlas-robot
[3]M. Abdallah and A. Goswami, "A Biomechanically Motivated Two-Phase Strategy for Biped Upright Balance Control," Proc. of Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 1996-2001, 2005.
[4]K.-h. Ahn and Y. Oh, "Walking Control of a Humanoid Robot Via Explicit and Stable Com Manipulation with the Angular Momentum Resolution," Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, pp. 2478-2483, 2006.
[5]R. O. Ambrose. Nasa Space Robotics Challenge Overview. Retrieved 29 May, 2016, from https://www.nasa.gov/sites/default/files/atoms/files/fs_space_robotics_150908.pdf
[6]S. R. Buss, "Introduction to Inverse Kinematics with Jacobian Transpose, Pseudoinverse and Damped Least Squares Methods," IEEE Journal of Robotics and Automation, Vol. 17, No. 1-19, p. 16, 2004.
[7]S.-L. Chang, J.-J. Lee, and H.-C. Yen, "Kinematic and Compliance Analysis for Tendon-Driven Robotic Mechanisms with Flexible Tendons," Mechanism and machine theory, Vol. 40, No. 6, pp. 728-739, 2005.
[8]C.-A. Cheng, "Robot Dynamics Learning and Human-Robot Interaction," Master Thesis, Department of Mechanical Engineering, National Taiwan University, 2013.
[9]B.-K. Cho, S.-S. Park, and J.-H. Oh, "Stabilization of a Hopping Humanoid Robot for a Push," Proc. of IEEE International Conference on Humanoid Robots, Nashville, USA, pp. 60-65, 2010.
[10]S. Choudhury and D. Kulić, "Gait Generation Via the Foot Placement Estimator for 3d Bipedal Robots," Proc. of IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, pp. 5689-5695, 2013.
[11]A. Dietrich, C. Ott, and A. Albu-Schäffer, "An Overview of Null Space Projections for Redundant, Torque-Controlled Robots," The International Journal of Robotics Research, Vol. 34, No. 11, pp. 1385-1400, 2015.
[12]F. Ficuciello, L. Villani, and B. Siciliano, "Impedance Control of Redundant Manipulators for Safe Human-Robot Collaboration," ACTA POLYTECHNICA HUNGARICA, Vol. 13, No. 1, pp. 223-238, 2016.
[13]F. Ficuciello, L. Villani, and B. Siciliano, "Redundancy Resolution in Human-Robot Co-Manipulation with Cartesian Impedance Control," The 14th International Symposium on Experimental Robotics, Marrakech & Essaouira, Marocco, pp. 165-176, 2016.
[14]Y. Fujimoto and A. Kawamura, "Proposal of Biped Walking Control Based on Robust Hybrid Position/Force Control," Proc. of IEEE International Conference on Robotics and Automation, Minneapolis, USA, Vol. 3, pp. 2724-2730, 1996.
[15]Y. Fujimoto and A. Kawamura, "Simulation of an Autonomous Biped Walking Robot Including Environmental Force Interaction," IEEE Robotics & Automation Magazine, Vol. 5, No. 2, pp. 33-42, 1998.
[16]Y. Fujimoto, S. Obata, and A. Kawamura, "Robust Biped Walking with Active Interaction Control between Foot and Ground," Proc. of IEEE International Conference on Robotics and Automation, Leuven, Belgium, Vol. 3, pp. 2030-2035, 1998.
[17]S. A. Gard, S. C. Miff, and A. D. Kuo, "Comparison of Kinematic and Kinetic Methods for Computing the Vertical Motion of the Body Center of Mass During Walking," Human movement science, Vol. 22, No. 6, pp. 597-610, 2004.
[18]A. Goswami, "Foot Rotation Indicator (Fri) Point: A New Gait Planning Tool to Evaluate Postural Stability of Biped Robots," Proc. of IEEE International Conference on Robotics and Automation, Detroit, USA, Vol. 1, pp. 47-52, 1999.
[19]A. Goswami and V. Kallem, "Rate of Change of Angular Momentum and Balance Maintenance of Biped Robots," Proc. of IEEE International Conference on Robotics and Automation, New Orleans, USA, Vol. 4, pp. 3785-3790, 2004.
[20]K. Hashimoto, H.-j. Kang, M. Nakamura, E. Falotico, H.-o. Lim, A. Takanishi, C. Laschi, P. Dario, and A. Berthoz, "Realization of Biped Walking on Soft Ground with Stabilization Control Based on Gait Analysis," Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vilamoura, Algarve, Portugal, pp. 2064-2069, 2012.
[21]A. Herzog, L. Righetti, F. Grimminger, P. Pastor, and S. Schaal, "Balancing Experiments on a Torque-Controlled Humanoid with Hierarchical Inverse Dynamics," Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, USA, pp. 981-988, 2014.
[22]H. Hirukawa, S. Hattori, S. Kajita, K. Harada, K. Kaneko, F. Kanehiro, M. Morisawa, and S. Nakaoka, "A Pattern Generator of Humanoid Robots Walking on a Rough Terrain," Proc. of IEEE International Conference on Robotics and Automation, Roma, Italy, pp. 2181-2187, 2007.
[23]Y.-J. Ho, "Dynamic Balancing Force Control of the Biped Robot Based on the Contact Force," Master Thesis, Department of Mechanical Engineering, National Taiwan University, 2015.
[24]A. Hofmann, "Robust Execution of Bipedal Walking Tasks from Biomechanical Principles,"2006.
[25]A. Hofmann, M. Popovic, and H. Herr, "Exploiting Angular Momentum to Enhance Bipedal Center-of-Mass Control," Proc. of IEEE International Conference on Robotics and Automation, Kobe, Japan, pp. 4423-4429, 2009.
[26]H.-P. Huang, J.-L. Yan, and T.-H. Cheng, "State-Incremental Optimal Control of 3d Cog Pattern Generation for Humanoid Robots," Advanced Robotics, Vol. 27, No. 3, pp. 175-188, 2013.
[27]S.-H. Hyon and G. Cheng, "Passivity-Based Full-Body Force Control for Humanoids and Application to Dynamic Balancing and Locomotion," Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, pp. 4915-4922, 2006.
[28]S.-H. Hyon, J. G. Hale, and G. Cheng, "Full-Body Compliant Human–Humanoid Interaction: Balancing in the Presence of Unknown External Forces," IEEE Transactions on Robotics, Vol. 23, No. 5, pp. 884-898, 2007.
[29]B. Jalgha, D. Asmar, and I. Elhajj, "A Hybrid Ankle/Hip Preemptive Falling Scheme for Humanoid Robots," Proc. of IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, pp. 1256-1262, 2011.
[30]B. Jalgha and D. C. Asmar, "A Simple Momentum Controller for Humanoid Push Recovery," Proc. of FIRA RoboWorld Congress, Incheon, Korea, pp. 95-102, 2009.
[31]S. Kagami, J. Kuffner, K. Nishiwaki, K. Okada, M. Inaba, and H. Inoue, "Humanoid Arm Motion Planning Using Stereo Vision and Rrt Search," Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, Nevada, USA, Vol. 3, pp. 2167-2172, 2003.
[32]S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa, "Biped Walking Pattern Generation by Using Preview Control of Zero-Moment Point," Proc. of IEEE International Conference on Robotics and Automation, Taipei, Taiwan, Vol. 2, pp. 1620-1626, 2003.
[33]S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa, "Resolved Momentum Control: Humanoid Motion Planning Based on the Linear and Angular Momentum," Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, USA, Vol. 2, pp. 1644-1650, 2003.
[34]S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Yokoi, and H. Hirukawa, "A Realtime Pattern Generator for Biped Walking," Proc. of IEEE International Conference on Robotics and Automation, Washington DC, USA, Vol. 1, pp. 31-37, 2002.
[35]S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa, "The 3d Linear Inverted Pendulum Mode: A Simple Modeling for a Biped Walking Pattern Generation," Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui, HI, USA, Vol. 1, pp. 239-246, 2001.
[36]S. Kajita, M. Morisawa, K. Harada, K. Kaneko, F. Kanehiro, K. Fujiwara, and H. Hirukawa, "Biped Walking Pattern Generator Allowing Auxiliary Zmp Control," Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, pp. 2993-2999, 2006.
[37]S. Kajita, M. Morisawa, K. Miura, S. i. Nakaoka, K. Harada, K. Kaneko, F. Kanehiro, and K. Yokoi, "Biped Walking Stabilization Based on Linear Inverted Pendulum Tracking," Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Taipei, Taiwan, pp. 4489-4496, 2010.
[38]S. Kajita, T. Nagasaki, K. Kaneko, K. Yokoi, and K. Tanie, "A Running Controller of Humanoid Biped Hrp-2lr," Proc. of IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 616-622, 2005.
[39]Y. Kanamiya, S. Ota, and D. Sato, "Ankle and Hip Balance Control Strategies with Transitions," Proc. of IEEE International Conference on Robotics and Automation (ICRA), AK, USA, pp. 3446-3451, 2010.
[40]M. Kanazawa, S. Nozawa, Y. Kakiuchi, Y. Kanemoto, M. Kuroda, K. Okada, M. Inaba, and T. Yoshiike, "Robust Vertical Ladder Climbing and Transitioning between Ladder and Catwalk for Humanoid Robots," Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, Hamburg, Germany, pp. 2202-2209, 2015.
[41]F. Kanehiro, W. Suleiman, K. Miura, M. Morisawa, and E. Yoshida, "Feasible Pattern Generation Method for Humanoid Robots," Proc. of IEEE-RAS International Conference on Humanoid Robots, Paris, France, pp. 542-548, 2009.
[42]K. Kaneko, K. Harada, F. Kanehiro, G. Miyamori, and K. Akachi, "Humanoid Robot Hrp-3," Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, pp. 2471-2478, 2008.
[43]H.-j. Kang, K. Hashimoto, H. Kondo, K. Hattori, K. Nishikawa, Y. Hama, H.-o. Lim, A. Takanishi, K. Suga, and K. Kato, "Realization of Biped Walking on Uneven Terrain by New Foot Mechanism Capable of Detecting Ground Surface," Proc. of IEEE International Conference on Robotics and Automation (ICRA), AK, USA, pp. 5167-5172, 2010.
[44]O. Khatib, J. Warren, V. De Sapio, and L. Sentis, "Human-Like Motion from Physiologically-Based Potential Energies," in On Advances in Robot Kinematics Springer, 2004 pp. 145-154.
[45]J.-H. Kim and J.-H. Oh, "Walking Control of the Humanoid Platform Khr-1 Based on Torque Feedback Control," Proc. of IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, Vol. 1, pp. 623-628, 2004.
[46]J.-Y. Kim, I.-W. Park, and J.-H. Oh, "Realization of Dynamic Stair Climbing for Biped Humanoid Robot Using Force/Torque Sensors," Journal of Intelligent and Robotic Systems, Vol. 56, No. 4, p. 389, 2009.
[47]J.-Y. Kim, I.-W. Park, and J.-H. Oh, "Walking Control Algorithm of Biped Humanoid Robot on Uneven and Inclined Floor," Journal of Intelligent & Robotic Systems, Vol. 48, No. 4, pp. 457-484, 2007.
[48]H.-Y. Lee and C.-G. Liang, "Displacement Analysis of the General Spatial 7-Link 7r Mechanism," Mechanism and machine theory, Vol. 23, No. 3, pp. 219-226, 1988.
[49]S.-H. Lee and A. Goswami, "Ground Reaction Force Control at Each Foot: A Momentum-Based Humanoid Balance Controller for Non-Level and Non-Stationary Ground," Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Taipei, Taiwan, pp. 3157-3162, 2010.
[50]S.-H. Lee and A. Goswami, "A Momentum-Based Balance Controller for Humanoid Robots on Non-Level and Non-Stationary Ground," Autonomous Robots, Vol. 33, No. 4, pp. 399-414, 2012.
[51]Q. Li, A. Takanishi, and I. Kato, "A Biped Walking Robot Having a Zmp Measurement System Using Universal Force-Moment Sensors," Proc. of IEEE/RSJ International Workshop on Intelligent Robots and Systems, Osaka, Japan, pp. 1568-1573, 1991.
[52]S.-Y. Lo, C.-A. Cheng, and H.-P. Huang, "Virtual Impedance Control for Safe Human-Robot Interaction," Journal of Intelligent & Robotic Systems, Vol. 82, No. 1, p. 3, 2016.
[53]S. Lu, J. Zhao, and L. Jiang, "Gradient Projection Method of Kinematically Redundant Manipulator Based on Improved Scale Factor," Proc. of World Congress on Intelligent Control and Automation (WCICA), Shenyang, China, pp. 4955-4960, 2014.
[54]A. Macchietto, V. Zordan, and C. R. Shelton, "Momentum Control for Balance," ACM Transactions on graphics (TOG), Vol. 28, No. 3, p. 80, 2009.
[55]W. Mao, G. Qin, and J.-J. Lee, "Humanoid Push Recovery Strategy for Unknown Input Forces," Proc. of International Conference on Mechatronics and Automation, Changchun, China, pp. 1904-1909, 2009.
[56]M. Mistry, J. Buchli, and S. Schaal, "Inverse Dynamics Control of Floating Base Systems Using Orthogonal Decomposition," Proc. of IEEE International Conference on Robotics and Automation (ICRA), AK, USA, pp. 3406-3412, 2010.
[57]M. Mistry, J. Nakanishi, G. Cheng, and S. Schaal, "Inverse Kinematics with Floating Base and Constraints for Full Body Humanoid Robot Control," Proc. of IEEE-RAS International Conference on Humanoid Robots, Daejeon, South Korea, pp. 22-27, 2008.
[58]K. Mitobe, G. Capi, and Y. Nasu, "A New Control Method for Walking Robots Based on Angular Momentum," Mechatronics, Vol. 14, No. 2, pp. 163-174, 2004.
[59]M. Morisawa, K. Harada, S. Kajita, K. Kaneko, F. Kanehiro, K. Fujiwara, S. Nakaoka, and H. Hirukawa, "A Biped Pattern Generation Allowing Immediate Modification of Foot Placement in Real-Time," Proc. of IEEE-RAS International Conference on Humanoid Robots, Genova, Italy, pp. 581-586, 2006.
[60]M. Morisawa, S. Kajita, K. Harada, K. Fujiwara, F. Kanehiro, K. Kaneko, and H. Hirukawa, "Emergency Stop Algorithm for Walking Humanoid Robots," Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, AB, Canada, pp. 2109-2115, 2005.
[61]M. Morisawa, F. Kanehiro, K. Kaneko, N. Mansard, J. Sola, E. Yoshida, K. Yokoi, and J.-P. Laumond, "Combining Suppression of the Disturbance and Reactive Stepping for Recovering Balance," Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Taipei, Taiwan, pp. 3150-3156, 2010.
[62]J. Nakanishi, M. Mistry, and S. Schaal, "Inverse Dynamics Control with Floating Base and Constraints," Proc. of IEEE International Conference on Robotics and Automation, Roma, Italy, pp. 1942-1947, 2007.
[63]D. N. Nenchev and A. Nishio, "Ankle and Hip Strategies for Balance Recovery of a Biped Subjected to an Impact," Robotica, Vol. 26, No. 5, pp. 643-653, 2008.
[64]D. N. Nenchev and A. Nishio, "Experimental Validation of Ankle and Hip Strategies for Balance Recovery with a Biped Subjected to an Impact," Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, pp. 4035-4040, 2007.
[65]D. N. Nenchev, K. Yoshida, P. Vichitkulsawat, and M. Uchiyama, "Reaction Null-Space Control of Flexible Structure Mounted Manipulator Systems," IEEE Transactions on Robotics and Automation, Vol. 15, No. 6, pp. 1011-1023, 1999.
[66]Y. Nishida, T. Sonoda, and K. Ishii, "Jacobian Matrix Derived from Cross Product and Its Application into High Power Joint Mechanism Analysis," Journal of Bionic Engineering, Vol. 7, pp. S218-S223, 2010.
[67]A. Nishio, K. Takahashi, and D. N. Nenchev, "Balance Control of a Humanoid Robot Based on the Reaction Null Space Method," Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, pp. 1996-2001, 2006.
[68]K. Nishiwaki and S. Kagami, "High Frequency Walking Pattern Generation Based on Preview Control of Zmp," Proc. of IEEE International Conference on Robotics and Automation, Orlando, FL, USA, pp. 2667-2672, 2006.
[69]E.-J. Ong and A. Hilton, "Learnt Inverse Kinematics for Animation Synthesis," Graphical Models, Vol. 68, No. 5, pp. 472-483, 2006.
[70]D. E. Orin and A. Goswami, "Centroidal Momentum Matrix of a Humanoid Robot: Structure and Properties," Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, pp. 653-659, 2008.
[71]C. Ott, C. Baumgärtner, J. Mayr, M. Fuchs, R. Burger, D. Lee, O. Eiberger, A. Albu-Schäffer, M. Grebenstein, and G. Hirzinger, "Development of a Biped Robot with Torque Controlled Joints," Proc. of IEEE-RAS International Conference on Humanoid Robots (Humanoids), Nashville, TN, USA, pp. 167-173, 2010.
[72]C. Ott, M. A. Roa, and G. Hirzinger, "Posture and Balance Control for Biped Robots Based on Contact Force Optimization," Proc. of IEEE-RAS International Conference on Humanoid Robots (Humanoids), Bled, Slovenia, pp. 26-33, 2011.
[73]E. Otten, "Inverse and Forward Dynamics: Models of Multi–Body Systems," Philosophical Transactions of the Royal Society of London B: Biological Sciences, Vol. 358, No. 1437, pp. 1493-1500, 2003.
[74]S. Parasuraman and L. S. Pei, "Bio-Mechanical Analysis of Human Joints and Extension of the Study to Robot," Proc. of Proceedings of World Academy Of Science, Engineering And Technology, Vol. 29, 2008.
[75]J. H. Park and H. Chung, "Hybrid Control for Biped Robots Using Impedance Control and Computed-Torque Control," Proc. of IEEE International Conference on Robotics and Automation, Detroit, MI, USA, Vol. 2, pp. 1365-1370, 1999.
[76]J. H. Park and K. D. Kim, "Biped Robot Walking Using Gravity-Compensated Inverted Pendulum Mode and Computed Torque Control," Proc. of IEEE International Conference on Robotics and Automation, Leuven, Belgium, Vol. 4, pp. 3528-3533, 1998.
[77]M. Popovic, A. Hofmann, and H. Herr, "Angular Momentum Regulation During Human Walking: Biomechanics and Control," Proc. of IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, Vol. 3, pp. 2405-2411, 2004.
[78]M. B. Popovic, A. Goswami, and H. Herr, "Ground Reference Points in Legged Locomotion: Definitions, Biological Trajectories and Control Implications," The International Journal of Robotics Research, Vol. 24, No. 12, pp. 1013-1032, 2005.
[79]J. Pratt, J. Carff, S. Drakunov, and A. Goswami, "Capture Point: A Step toward Humanoid Push Recovery," Proc. of IEEE-RAS International Conference on Humanoid Robots, Genova, Italy, pp. 200-207, 2006.
[80]N. A. Radford, P. Strawser, K. Hambuchen, J. S. Mehling, W. K. Verdeyen, A. S. Donnan, J. Holley, J. Sanchez, V. Nguyen, and L. Bridgwater, "Valkyrie: Nasa''s First Bipedal Humanoid Robot," Journal of Field Robotics, Vol. 32, No. 3, pp. 397-419, 2015.
[81]J. Rebula, F. Canas, J. Pratt, and A. Goswami, "Learning Capture Points for Humanoid Push Recovery," Proc. of IEEE-RAS International Conference on Humanoid Robots, Pittsburgh, USA, pp. 65-72, 2007.
[82]L. Righetti, J. Buchli, M. Mistry, and S. Schaal, "Control of Legged Robots with Optimal Distribution of Contact Forces," Proc. of IEEE-RAS International Conference on Humanoid Robots (Humanoids), Bled, Slovenia, pp. 318-324, 2011.
[83]L. Roussel, C. Canudas-de-Wit, and A. Goswami, "Generation of Energy Optimal Complete Gait Cycles for Biped Robots," Proc. of IEEE International Conference on Robotics and Automation, Leuven, Belgium, Vol. 3, pp. 2036-2041, 1998.
[84]S. K. Saha, "A Unified Approach to Space Robot Kinematics," IEEE Transactions on Robotics and Automation, Vol. 12, No. 3, pp. 401-405, 1996.
[85]E. D. Sontag and Y. Wang, "On Characterizations of the Input-to-State Stability Property," Systems & Control Letters, Vol. 24, No. 5, pp. 351-359, 1995.
[86]B. Stephens, "Humanoid Push Recovery," Proc. of IEEE-RAS International Conference on Humanoid Robots, Pittsburgh, USA, pp. 589-595, 2007.
[87]B. J. Stephens and C. G. Atkeson, "Dynamic Balance Force Control for Compliant Humanoid Robots," Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei,Taiwan, pp. 1248-1255, 2010.
[88]T. Sugihara and Y. Nakamura, "Enhancement of Boundary Condition Relaxation Method for 3d Hopping Motion Planning of Biped Robots," Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, pp. 444-449, 2007.
[89]T. Sugihara, Y. Nakamura, and H. Inoue, "Real-Time Humanoid Motion Generation through Zmp Manipulation Based on Inverted Pendulum Control," Proc. of IEEE International Conference on Robotics and Automation, Washington DC, USA, Vol. 2, pp. 1404-1409, 2002.
[90]T. Takenaka, T. Matsumoto, and T. Yoshiike, "Real Time Motion Generation and Control for Biped Robot-1 St Report: Walking Gait Pattern Generation," Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, pp. 1084-1091, 2009.
[91]T. Takenaka, T. Matsumoto, and T. Yoshiike, "Real Time Motion Generation and Control for Biped Robot-3 Rd Report: Dynamics Error Compensation," Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, pp. 1594-1600, 2009.
[92]T. Takenaka, T. Matsumoto, T. Yoshiike, T. Hasegawa, S. Shirokura, H. Kaneko, and A. Orita, "Real Time Motion Generation and Control for Biped Robot-4 Th Report: Integrated Balance Control," Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, pp. 1601-1608, 2009.
[93]T. Takenaka, T. Matsumoto, T. Yoshiike, and S. Shirokura, "Real Time Motion Generation and Control for Biped Robot-2 Nd Report: Running Gait Pattern Generation," Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, pp. 1092-1099, 2009.
[94]K. Tcho, "Optimal Extended Jacobian Inverse Kinematics Algorithms for Robotic Manipulators," IEEE Transactions on Robotics, Vol. 24, No. 6, pp. 1440-1445, 2008.
[95]J. Urata, K. Nshiwaki, Y. Nakanishi, K. Okada, S. Kagami, and M. Inaba, "Online Decision of Foot Placement Using Singular Lq Preview Regulation," Proc. of IEEE-RAS International Conference on Humanoid Robots (Humanoids), Bled, Slovenia, pp. 13-18, 2011.
[96]J. Urata, K. Nshiwaki, Y. Nakanishi, K. Okada, S. Kagami, and M. Inaba, "Online Walking Pattern Generation for Push Recovery and Minimum Delay to Commanded Change of Direction and Speed," Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems Vilamoura, Portugal, pp. 3411-3416, 2012.
[97]N. Vahrenkamp, D. Berenson, T. Asfour, J. Kuffner, and R. Dillmann, "Humanoid Motion Planning for Dual-Arm Manipulation and Re-Grasping Tasks," Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, pp. 2464-2470, 2009.
[98]M. Vukobratović and B. Borovac, "Zero-Moment Point—Thirty Five Years of Its Life," International journal of humanoid robotics, Vol. 1, No. 01, pp. 157-173, 2004.
[99]M. Vukobratović, B. Borovac, and V. Potkonjak, "Zmp: A Review of Some Basic Misunderstandings," International Journal of Humanoid Robotics, Vol. 3, No. 02, pp. 153-175, 2006.
[100]A. Werner, R. Lampariello, and C. Ott, "Optimization-Based Generation and Experimental Validation of Optimal Walking Trajectories for Biped Robots," Proc. of 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Portugal, pp. 4373-4379, 2012.
[101]P.-B. Wieber, "Holonomy and Nonholonomy in the Dynamics of Articulated Motion," in Fast Motions in Biomechanics and Robotics Springer, 2006 pp. 411-425.
[102]K. Yamamoto, "Identification of Macroscopic Feedback Gain in a Position-Controlled Humanoid Robot and Its Application to Falling Detection," Proc. of IEEE-RAS International Conference on Humanoid Robots (Humanoids), Madrid, Spain, pp. 487-492, 2014.
[103]K. Yamamoto, "Maximal Output Admissible Set for Trajectory Tracking Control of Biped Robots and Its Application to Falling Avoidance Control," Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, pp. 3643-3648, 2013.
[104] X. Lihua, S. Yeng-Chai, and C. E. De Souza, "Robust Kalman Filtering for Uncertain Discrete-Time Systems," IEEE Transactions on Automatic Control, Vol. 39, No. 6, pp. 1310-1314, 1994.
[105] G. Welch, G. Bishop, "An Introduction to the Kalman Filter", Department of Computer Science University of North Carolina at Chapel, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top