跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/02 16:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施華宇
研究生(外文):Hua-Yu Shih
論文名稱:手輪馬達電動輪椅之霍爾感測器失效控制策略
論文名稱(外文):Hall Sensor Fault Tolerant Control Strategy for a Powered Wheelchair Driven by Rim Motors
指導教授:陽毅平陽毅平引用關係
口試日期:2017-07-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:125
中文關鍵詞:手輪馬達電動輪椅機械式煞車霍爾感測器失效控制
外文關鍵詞:rim motorelectric wheelchairmechanical brakehall sensorfault tolerant control
相關次數:
  • 被引用被引用:5
  • 點閱點閱:208
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文的研究目的在於開發手輪馬達電動輪椅之霍爾感測器失效偵測系統,並搭配馬達轉子角度之估算系統,並將其整合成手輪馬達電動輪椅之霍爾感測器失效控制策略,文中先介紹手輪馬達電動輪椅之動力系統手輪馬達及機械式煞車模組,機械式煞車模組主要由機械式煞車系統及手持釋放機構組合而成,機械式煞車系統採用咬接離合器配合彈簧與電磁閥,此煞車原理為利用彈簧力將咬接離合器壓緊,使輪子停止轉動達到煞車效果,並藉由控制電磁閥抵抗彈簧力將煞車釋放,在電力系統發生異常無法使用電磁閥釋放煞車時,可以使用手持式釋放機構將煞車釋放,轉動三爪型操作介面藉由螺紋將轉動運動轉為直線運動,推動咬接離合器使煞車釋放。
本研究之手輪馬達的主要架構為直流無刷馬達,搭配三顆霍爾感測器做為提供轉子角度的資訊,此種位置感測器有成本低且體積小之優點,本文觀察三顆霍爾感測器在馬達轉動時所輸出的訊號,藉此建立霍爾感測器失效偵測系統,當訊號出現異常時,將會針對此異常訊號進行判斷,選出正常運作之霍爾感測器,並用其進行單一霍爾感測器轉子角度估測,如判斷無正常運作之霍爾感測器則進行無感測器角度估測,最後再將轉子角度資訊輸出至下控制器以驅動手輪馬達,使電動輪椅得以運行。
本研究之霍爾感測器失效控制策略,使手輪馬達電動輪椅在行駛過程中免於因霍爾感測器損壞或訊號異常而導致輪椅失控的情形,可以有效的防止或降低危險,並且搭配安全性機械煞車,確保輪椅在停止時不會因為地形因素而任意移動,如此一來可以加強此電動輪椅之安全性。
The purpose of this paper is to discuss the development of a powered wheelchair driven by a rim motor of the Hall sensor failure detection system while matching it with a rotor angle estimation system, and to integrate it into the Hall sensor fault tolerant control strategy for a powered wheelchair driven by rim motors.

This paper will firstly introduce the power system of the powered wheelchair driven by rim motors and the mechanical brake module. The mechanical brake module is primarily composed of a mechanical brake system and a handheld release brake system, as well as adding the spring and the Solenoid valve together by using the dog clutch. The principle of this brake system is to utilize the Spring force to press the dog clutch tightly, making the wheel stop rotating in order to achieve the brake effect, and also to release the brake by controlling the Solenoid valve against the Spring force. When anomalies occur in the power system and the system cannot release the brake by the Solenoid valve, it is still possible to release the brake by the handheld release brake system, rotating the three-clawed operation interface in order to make the handheld release brake system into linear motion due to the screw thread, then pushing the dog clutch to release the brake.
The main structure of the rim motor in this study is a brushless DC motor. It provides information of the rotor angle by combining with three hall sensors. These position sensors are advantageous for their low cost and small size. By observing the signal from these three Hall sensors when the motor rotates, this study establishes the fault tolerant control system of Hall sensor. When anomalies occur from the signal, this study will distinguish the abnormal signal, choosing the Hall sensor which is in good condition. It will operating the rotor angle estimation of the single Hall sensor by using the Hall sensor which is in good condition. If there is no well- working Hall sensor to be distinguished, it will operate the estimation of sensorless angle, and output the information of rotor angle into the under controller to drive the rim motor, making sure that the powered wheelchair is available.
The Hall Sensor Failure control strategy we discussed in this paper makes the powered wheelchair driven by the rim motor remain in control due to Hall sensor damages or abnormal signals while driving. It can effectively prevent or reduce dangers. Additionally, as it is equipped with a mechanical safety brake, the strategy ensures that wheelchair ignores different terrain factors and stays put instead of moving in arbitrary directions when it stops. As a result, it strengthens the safety of the powered wheelchair.
誌謝 i
中文摘要 ii
ABSTRACT iv
目錄 vi
圖目錄 ix
表目錄 xiv
符號表 xv
第一章 緒論 1
1.1研究動機 1
1.2文獻回顧 2
1.2.1電動輪椅動力系統 2
1.2.2直流無刷馬達驅動控制 4
1.2.3霍爾感測器角度估測 7
1.2.4直流無刷馬達失效控制 8
1.3論文架構及章節摘要 9
第二章 手輪馬達電動輪椅整車系統與模型 11
2.1整車系統架構 11
2.1.1手輪馬達 12
2.1.2煞車模組 16
2.2 整車動態模型 24
2.2.1手輪馬達動態方程式 24
2.2.2手輪馬達簡化模型 31
2.2.3整車車體動態方程式 33
2.3 整車控制架構 39
2.3.1上控制器 39
2.3.2下控制器[44] 42
2.3.4整車控制系統 45
第三章 直流無刷馬達基本工作原理 47
3.1直流無刷馬達運作原理介紹 47
3.1.1直流無刷馬達架構簡介[42] 47
3.1.2直流無刷馬達運作原理 50
3.2 轉子位置偵測感應器簡介 52
3.2.1編碼器 52
3.2.2霍爾感測器 53
3.3直流無刷馬達三相Y接反電動勢與霍爾感測器位置關係[45] 55
3.3.1 反電動勢波型 56
3.3.2霍爾感測器安裝位置 62
第四章 失效控制邏輯與原理 65
4.1控制器介紹 65
4.2霍爾感測器失效判斷邏輯 67
4.2.1一顆霍爾訊號失效情況 70
4.2.2兩顆霍爾訊號失效情況 73
4.3手輪馬達磁場導向控制 80
4.3.1磁場導向架構 80
4.3.2座標轉換[43] 80
4.4霍爾感測器角度估測原理與實現 86
4.4.1三顆霍爾感測器角度估測原理與實現 86
4.4.2單一霍爾感測器角度估測原理與實現 88
4.4.3無感測器角度估測法[45] 89
4.5失效控制策略架構 93
第五章 實驗與結果討論 95
5.1實驗設備與場地 95
5.2霍爾訊號失效控制策略之實驗與性能測試 96
5.2.1轉子角度修正 96
5.2.2轉子角度估測法測試 99
5.2.3手輪馬達霍爾訊號失效控制驗證 106
5.2.4落地實測 115
第六章 結論與未來展望 118
6-1結論 118
6.2未來展望 119
參考文獻 120
[1]N. Shinde and K. George, "Brain-controlled driving aid for electric wheelchairs," 2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN), San Francisco, CA, 2016, pp. 115-118.
[2]M. F. Ruzaij, S. Neubert, N. Stoll and K. Thurow, "A speed compensation algorithm for a head tilts controller used for wheelchairs and rehabilitation applications," 2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI), Herl''any, 2017, pp. 000497-000502
[3]K. T. Kim; H. I. Suk; S. W. Lee, "Commanding a Brain-Controlled Wheelchair using Steady-State Somatosensory Evoked Potentials," in IEEE Transactions on Neural Systems and Rehabilitation Engineering , vol.PP, no.99, pp.1-1
[4]L. Liao et al., "Control system of powered wheelchairs based on tongue motion detection," 2016 IEEE 15th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC), Palo Alto, CA, 2016, pp. 411-414.
[5]T. Masuzawa, Y. Nakajima, and H. Ikeda, "Development of all directional powered wheelchair," IEEE Vehicle Power and Propulsion Conference (VPPC), Harbin, China, Sept. 3-5, 2008.
[6]K. Sakai, T. Yasuda, and K. Tanaka, "Improvements of manipulation torque transfer mechanism and assist unit for one hand drive wheelchair with a triple ring," Proceedings of the 2009 IEEE International Conference on Robotics and Biomimetics, Guilin, China, Dec. 19-23, 2009, pp.196-201.
[7]K. Sakai, T. Yasuda, and K. Tanaka, "Power assist effects of a new type assist unit in a one hand drive wheelchair with a triple ring," The 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, Oct. 18-22, 2010, pp.6040-6045.
[8]H. Park, M. Kiani, H.-M. Lee, J. Kim, and J. Block, "A wireless magnetoresistive sensing system for an intraoral tongue-computer interface," IEEE Transactions on Biomedical Circuits and Systems, vol. 6, issue 6, pp. 571-585, Dec. 2012.
[9]J. Kim, X. Huo, and J. Minocha, "Evaluation of a smartphone platform as a wireless interface between tongue drive system and electric-powered wheelchairs," IEEE Transactions on Biomedical Engineering, vol. 59, issue 6, pp. 1787 – 1796, April. 2012.
[10]Jinyi Long, "A Hybrid Brain Computer Interface to Control the Direction and Speed of a Simulated or Real Wheelchair", IEEE Transactions on Neural Systems and Rehabilitation Engineering, pp.720 - 729, June 2012.
[11]Gunachandra, "Wall following control for the application of a brain-controlled Wheelchair", Intelligent Autonomous Agents, Networks and Systems , 2014 IEEE International Conference on, pp.36 - 41, 19-21 Aug. 2014.
[12]Koji Miyazaki, "Guide following control using laser range sensor for a smart Wheelchair", ICCAS-SICE, pp.4613 - 4616, 18-21 Aug. 2009.
[13]Ching-Lung Chang, "Kinect-based Powered Wheelchair Control System", 2013 4th International Conference on Intelligent Systems, Modelling and Simulation, pp.186 - 189, Jan. 2013.
[14]T. Shibata, and T. Murakami, "Power-assist control of pushing task by repulsive compliance control in electric wheelchair," IEEE Transactions on Industrial Electronics, vol. 59, issue 1, pp. 511 – 520, Jan. 2012.
[15]R. J. Farris and M. Goldfarb, "Design of a multidisc electromechanical brake," IEEE/ASME Trans. Mechatronics, vol. 16, no. 6, pp. 985–993, Dec. 2011.
[16]Y.-P. Yang, H.-C. Lin, and C.-T. Lu, " Design and integration of power wheels with rim motors for a powered wheelchair," Proceedings of 2011 International Conference on Superconductivity and Electromagnetic Devices (ASEMD), Sydney, Australia, Dec. 14-16, 2011.
[17]Y.-P. Yang, H.-C. Lin, F.-C. Tsai, C.-T. Lu, and K.-H. Tu, "Design and integration of dual power wheels with rim motors for a powered wheelchair," IET, Electric Power Applications, vol. 6, issue 7, pp. 419-428, Dec. 2012.
[18]T. M. Jahns, "Torque production in permanent-magnet synchronous motor drives with rectangular current excitation," IEEE Transactions on Industry Applications, vol. IA-20, no. 4, pp. 803-813, Jul./Aug. 1984.
[19]J. A. Houldsworth and D. A. Grant, "The use of harmonic distortion to increase the output voltage of a three-phase PWM inverter," IEEE Transactions on Industry Applications, vol. IA-20, no. 5, pp. 1224-1228, Sept. 1984.
[20]H. W. Van Der Broeck, H. C. Skudelny, and G. V. Stanke, "Analysis and realization of a pulsewidth modulator based on voltage space vectors," IEEE Transactions on Industry Applications, vol. 24, no. 1, pp. 142-150, Jan./Feb. 1988.
[21]Texas Instruments. (2003, October) Digital motor control software library. [Online]. Available: http://focus.ti.com/lit/ug/spru485a/spru485a.pdf
[22]林容益, DSP數位化機電控制(TMS320 F281X系統). 新北市: 全華圖書股份有限公司, 2008.
[23]I. Takahashi and T. Noguchi, "A new quick-response and high-efficiency control strategy of an induction motor," IEEE Transactions on Industry Applications, vol. IA-22, no. 5, pp. 820-827, Sept./Oct. 1986.
[24]L. Zhong, M. F. Rahman, W. Y. Hu, and K. Lim, "Analysis of direct torque control in permanent magnet synchronous motor drives," IEEE Transactions on Power Electronics, vol. 12, no. 3, pp. 528-536, May 1997.
[25]Y. Chen, S. Huang, and S. Wan, "Direct torque controller for low velocity and high torque PMSM based on TMS320F2812 DSP," in International Conference on Mechatronics and Automation, Harbin, China, 2007, pp. 3662-3667.
[26]S. Bharatkar, R. Yanamshetti, D. Chatterjee, and A. Ganguli, "Dual-mode switching technique for reduction of commutation torque ripple of brushless dc motor," IET Electric Power Applications, vol. 5, no. 1, pp. 193-202, 2011.
[27]W. Yan, J. Hu, V. Utkin, and L. Xu, "Sliding mode pulsewidth modulation," IEEE Transactions on Power Electronics, vol. 23, no. 2, pp. 619-626, Mar. 2008
[28]D. M. Lee, "Position estimator employing Kalman filter for PM motors driven with Binary-type Hall sensors," J. Elec. Eng. & Tech., Vol. 11, No. 4, pp. 931-938, Jul. 2016
[29]Y. Yang, Y. Ting, "Improved angular displacement estimation based on Hall-effect sensors for driving a brushless permanent-magnet motor", IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 504-511, Jan. 2014.
[30]Q. Ni, "Observer-based estimation improvement for servo control of PMSM with binary-type hall sensors," IEEE Applied Power Electronics Conference and Exposition, Tampa, USA, pp.539-545,2017.
[31]Z. Wang, "Improved rotor position estimation for permanent magnet synchronous machines based on hall-effect sensors," IEEE International Conference on Aircraft Utility Systems, Beijing, China, pp.911-916, Oct. 2016.
[32]X. Song, J. Fang, and B. Han, "High-precision rotor position detection for high-speed surface PMSM drive based on linear hall-effect sensors, "IEEE Trans. Power Electron., vol. 31, no. 7, pp. 4720–4731, Jul. 2016.
[33]E. Balaban, A. Saxena, P. Bansal, K. Goebel, and S. Curran, "Modeling, detection, and disambiguation of sensor faults for aerospace applications", IEEE Sensors Journal, vol. 9, no. 12, pp. 1907-1917, 2009.
[34]A. Tashakori, M. Ektesabi, "A simple fault tolerant control system for Hall effect sensor failure of BLDC motor", Proc. IEEE Conf. Ind. Electron. Appl., pp. 1011-1016, 2013.
[35]H. Mehta, U. Thakar, V. Joshi, K. Rathod, P. Kurulkar, "Hall sensor fault detection and fault tolerant control of PMSM drive system, "International Conference on Industrial Instrumentation and Control, pp.624-629,2015.
[36]V. Sova, J. Chalupa, R. Grepl, "Fault tolerant BLDC motor control for hall sensors failure, "21st International Conference on Automation and Computing, pp.1-6,2015
[37]L. Dong, Y. Huang, J. Jatskevich, J. Liu, "Improved Fault-Tolerant Control for Brushless Permanent Magnet Motor Drives With Defective Hall Sensors", IEEE Trans. Energy Convers., vol. 31, no. 2, pp. 789-799, Jun. 2016.
[38]T. Selmi, H. E. K. Baitie and A. Masmoudi, "An approach to diagnose and remediate failures of Hall Effect sensors in BLDC motors," 2015 International Conference on Sustainable Mobility Applications, Renewables and Technology (SMART), Kuwait City, 2015, pp. 1-7.
[39]G. Scelba, G. De Donato, M. Pulvirenti, F. Giulii Capponi and G. Scarcella, "Hall-Effect Sensor Fault Detection, Identification, and Compensation in Brushless DC Drives," in IEEE Transactions on Industry Applications, vol. 52, no. 2, pp. 1542-1554, March-April 2016.
[40]董紹安, 手輪馬達電動輪椅之控制系統整合策略 , 碩士論文, 國立台灣大學, 2016.
[41]林信志, 新型手輪馬達電動輪椅雙動力輪與控制策略的整合, 碩士論文, 國立台灣大學, 台北, 2011.
[42]吳建維, 手輪馬達電動輪椅之煞車與上波起步控制策略, 碩士論文, 國立台灣大學, 台北, 2014.
[43]丁奕元, 基於霍爾感測器之改良型轉子角度估算法應用於內藏式永磁同步馬達之驅動控制, 碩士論文, 國立台灣大學, 台北, 2011.
[44]林怡紹, 手輪馬達電動輪椅力矩控制暨參數識別, 碩士論文, 國立台灣大學, 台北, 2017.
[45]葉治緯, 手輪馬達電動輪椅驅動器設計與整車控制及路徑學習策略, 碩士論文, 國立台灣大學,台北,2017
[46]Texas Instruments, Sensorless Field Oriented Control of 3-Phase Permanent Magnet Synchronous Motors, [Online]. Available:
http://www.ti.com/lit/an/sprabq3/sprabq3.pdf
[47]Texas Instruments, Sliding-Mode Rotor Position Observer of PMSM, [Online]. Available:
http://www.ti.com/tool/controlsuite
[48]Texas Instruments, TMS320x2806x Piccolo Technical Reference Manual, [Online]. Available:
http://www.ti.com/lit/ug/spruh18g/spruh18g.pdf
[49]VISHAY, SUM110N06-3m9H, [Online]. Available:
http://www.vishay.com/docs/73236/sum110n0.pdf
[50]趙貴祥, DC無刷電動機與控制電路. 台北市:文笙書局, 1995.
[51]National Instruments, 編碼器種類、原理與運動量測方法, [Online]. Available:
http://www.ni.com/tutorial/7109/zht/
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊