跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/17 23:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳俊昇
研究生(外文):Chun-Sheng Chen
論文名稱:多軸力規開發與以力與位置複合控制實現六足機器人動態步態
論文名稱(外文):Development of a Multi-axis Force Sensor and a Force-Position Hybrid Controller for Dynamic Gait Generation in a Hexapod Robot
指導教授:林沛群
口試日期:2017-07-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:135
中文關鍵詞:多軸力規六足機器人動態步態力與位置複合控制力控制模型
外文關鍵詞:multi-axis force/torque sensorhexapodRHexforce and position hybrid controlforce control simulationdynamic gait
相關次數:
  • 被引用被引用:0
  • 點閱點閱:184
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文致力於設計應用於六足機器人髖關節上之自製多軸力規,並將力規應用於機器人動態步態之調控。透過重新設計多軸力規,搭配FEM分析了解力規應變狀況,使圓形力規在同樣受力下有產生更大的應變訊號。從四分之一橋改為半橋設計,不但增加量測應變,且解決溫度飄移效應。採用創新的固定馬達方式,使得自製力規框架不與馬達直接接觸,達到阻隔馬達電位雜訊的功能,不導電之樹脂螺絲也不易斷裂。種種新設計使得力規校正從最大誤差10 N降至2 N,故可將圓形自製力規之量測值做為回授進行機器人動態步態控制。
模擬上以PR-SLIP模型(具有位置控制之R-SLIP模型)為基礎,加入模型當時受力做為力回授訊號,建構HybridR-SLIP模型,為一具有力與位置複合控制模型。HybridR-SLIP模型以被動動態R-SLIP髖關節軌跡為位置目標、R-SLIP地面作用力為受力目標,分別計算應給予髖關節自由度力矩,混合後控制模型運動。給予一有偏差的初始狀況,在模擬上驗證了使用力與位置複合控制可以使得模型更快的收斂至目標被動動態上。
設計與製作FORHex機器人,與六足型態的TWIX相比有更好的剛性,減少自製力規受到機身變形的影響。以R-SLIP所計算出之穩定點進行Tripod步態實驗,誘發FORHex機器人進行被動動態運動。在觸地速度角度大的穩定點中,FORHex機器人與R-SLIP模型存在較大的受力差異。透用力與位置複合控制使其受力輪廓更貼近R-SLIP被動動態,電能消耗因此降低,機器人運動動態更貼近圓弧形腳本身之被動動態。
在模擬中觀察到HybridR-SLIP暫態收斂性提高,在實驗中觀察到FORHex穩態貼近被動動態,雙方面驗證力與位置複合控制可改善機器人步態。
This research is dedicated to improve performance of self-made multi-axis force/torque sensor embedded on hip actuator of hexapod robot and apply it to control dynamic gaits of robot. By utilizing finite element analysis to help us understanding mechanism under force/torque sensor stress/strain behavior, new force/torque sensor design produces larger strain signal under same load than last version. Strain gauges temperature drift problem is solved and measured signal is larger by changing quarter bridge to half bridge design. A novel motor housing method is applied to stop direct connection between self-made sensor and motor, making sure that electrical voltage potential of motor would not influence the measuring signal of half bridge. It also decrease possibility of reny screws’ fracture. Overall, these improvements reduce the calibration error of force/torque sensor from 10N maximum to 2N. Hence, measurement values of self-made force/torque sensor can be used as feedback signal to control dynamic gaits of robot.
In simulation, HybridR-SLIP model is proposed, which use PR-SLIP model as foundation, adding ground reaction force feedback to achieve force control. Hip trajectory and ground reaction force profile in R-SLIP model are used as position control target and force control target. After calculating torque requirements in each controller, hybrid controller sums up position and force control results to control hip DoF of the model. Given a deviation in initial touchdown condition, force and position hybrid control making model converging to passive dynamics of target fixed points faster is verified in simulation.
Design and manufacturing Hexapod FROHex, which is more rigid than TWIX, reduces the influence of strain signal of force/torque sensor when deformation of robot is occurred. Results of fixed points in R-SLIP model are used to induce passive dynamics of FROHex. It exists about 100N difference between FROHex and R-SLIP model in high touchdown speed angle fixed point targets. Through force and position hybrid control, measuring force profiles are closer to those of R-SLIP model. Because of smaller difference between dynamics of robot and real passive dynamics of circular legs, electrical consumption are reduced under hybrid control strategy.
In simulation, HybridR-SLIP shows greater converge ability in transient state. In experiments, force feedback control strategy induced passive dynamics in force profile. Force and position hybrid control is verified to improve dynamics of robot in both way.
誌謝 II
中文摘要 III
ABSTRACT IV
目錄 VI
圖目錄 X
表目錄 XV
第一章 緒論 1
1.1前言 1
1.2 研究動機 2
1.3 文獻回顧 3
1.3.1 多軸力規設計 3
1.3.2 力回饋控制 6
1.4 貢獻 10
1.5 論文架構 10
第二章 多軸力規開發 12
2.1力規相關原理 13
2.1.1 力規訊號轉換 13
2.1.2 自製力規校正 15
2.2 自製力規之改量升級 16
2.2.1 抑制傳導雜訊 17
2.2.2 形狀設計以及FEM驗證 20
2.2.3 半橋硬體設計 25
2.2.4 半橋電路設計 27
2.2.5 數位程控半橋程式設計 30
2.3 自製力規性能驗證 31
2.3.1 應變計溫度飄移現象評估 32
2.3.2 自製力規校正 32
2.3.3 自製力規校正結果評估 38
2.3.4 動態負載實驗 39
2.3.5 自由落下實驗 43
2.3.6 力角度與踏點力臂量測實驗 45
2.3.7 動態踏點量測實驗 48
2.4 本章結論 50
第三章 機器人機構設計以及機電系統 51
3.1 機構設計 51
3.1.1 機器人前後半身 52
3.1.2 機器人中軸 54
3.1.3馬達延長軸 55
3.1.4 機器人整體架構 56
3.2機電系統 56
3.2.1 電源系統 57
3.2.2 控制與訊號分配系統 58
3.2.3 驅動系統 61
3.2.4 馬達電流監控系統 62
3.2.5 自製力規半橋系統 62
3.2.6 商用力規系統 63
3.2.7姿態估測系統 65
3.2.8 Vicon觸發系統 65
3.3本章結論 66
第四章 具力與位置複合控制之動態模型 67
4.1 回顧R-SLIP模型 67
4.1.1 各階段運動方程式 68
4.1.2 R-SLIP模型中的穩定點fixed points 72
4.2 PR-SLIP──具位置控制之R-SLIP模型 77
4.2.1 擬合R-SLIP模型穩定點軌跡 78
4.2.2 位置控制模擬方式 79
4.2.3 兩種軌跡擬合法之差異 81
4.2.4 雙周期動態剖析 83
4.3 HYBRIDR-SLIP──具力與位置複合控制之R-SLIP模型 85
4.3.1 R-SLIP模型理論受力 85
4.3.2 力與位置複合控制 87
4.3.3 HybridR-SLIP模型擬合R-SLIP模型之穩定點GRF 89
4.3.4 傳導相加HybridR-SLIP模型 90
4.3.5 不同複合控制模擬在不同初始條件偏動下之表現 95
4.4本章結論 97
第五章 力與位置複合控制實驗 98
5.1 控制架構 98
5.1.1 馬達軌跡給定方式 98
5.1.2 扭力控制方式 100
5.1.3 馬達常數量測 101
5.1.4 力與位置複合控制架構 103
5.2 實驗環境 105
5.3 實驗結果 106
5.3.1 位置控制實驗結果 107
5.3.2 力與位置複合控制增益調控 112
5.3.3 複合控制實驗比較 115
5.3.4 複合控制模擬以及實驗之比較 124
5.4 本章結論 124
第六章 結論與未來展望 125
6.1 結論 125
6.2 未來展望 125
參考文獻 128
附錄一 符號對照表 132
[1]R. J. Full and D. E. Koditschek, "Templates and anchors: neuromechanical hypotheses of legged locomotion on land," Journal of Experimental Biology, vol. 202, p. 3325, 1999.
[2]F. Beyeler, S. Muntwyler, and B. J. Nelson, "A Six-Axis MEMS Force-Torque Sensor With Micro-Newton and Nano-Newtonmeter Resolution," Journal of Microelectromechanical Systems, vol. 18, pp. 433-441, 2009.
[3]F. Beyeler, S. Muntwyler, and B. J. Nelson, "Design and calibration of a microfabricated 6-axis force-torque sensor for microrobotic applications," in IEEE International Conference on Robotics and Automation, pp. 520-525, 2009.
[4]S. Hirose and K. Yoneda, "Development of optical six-axial force sensor and its signal calibration considering nonlinear interference," in IEEE International Conference on Robotics and Automation, pp. 46-53, 1990.
[5]J. D. Goldberg and R. S. Fearing, "Force Sensing Shell using a Planar Sensor for Miniature Legged Robots," in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2015.
[6]X. A. Wu, T. M. Huh, R. Mukherjee, and M. Cutkosky, "Integrated Ground Reaction Force Sensing and Terrain Classification for Small Legged Robots," IEEE Robotics and Automation Letters, vol. 1, pp. 1125-1132, 2016.
[7]S. S. Desai, A. M. Eckert-Erdheim, and A. M. Hoover, "A large-area tactile force sensor for measuring ground reaction forces from small legged robots," in IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4753-4758, 2013.
[8]M. Y. Chuah and S. Kim, "Enabling Force Sensing During Ground Locomotion: A Bio-Inspired, Multi-Axis, Composite Force Sensor Using Discrete Pressure Mapping," IEEE Sensors Journal, vol. 14, pp. 1693-1703, 2014.
[9]A. Ananthanarayanan, S. Foong, and K. Sangbae, "A compact two DOF magneto-elastomeric force sensor for a running quadruped," in IEEE International Conference on Robotics and Automation, pp. 1398-1403, 2012.
[10]G.-S. Kim, H.-J. Shin, and J. Yoon, "Development of 6-axis force/moment sensor for a humanoid robot''s intelligent foot," Sensors and Actuators A: Physical, vol. 141, pp. 276-281, 2008.
[11]B. Wu, J. Luo, F. Shen, Y. Ren, and Z. Wu, "Optimum design method of multi-axis force sensor integrated in humanoid robot foot system," Measurement, vol. 44, pp. 1651-1660, 2011.
[12]M. A. Hoepflinger, C. D. Remy, M. Hutter, L. Spinello, and R. Siegwart, "Haptic terrain classification for legged robots," in IEEE International Conference on Robotics and Automation, pp. 2828-2833, 2010.
[13]A. Schmidt and K. Walas, "The Classification of the Terrain by a Hexapod Robot," in Proceedings of the 8th International Conference on Computer Recognition Systems CORES, Heidelberg, pp. 825-833, 2013.
[14]M. Zucker, N. Ratliff, M. Stolle, J. Chestnutt, J. A. Bagnell, C. G. Atkeson, et al., "Optimization and learning for rough terrain legged locomotion," The International Journal of Robotics Research, vol. 30, pp. 175-191, 2011.
[15]M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, and S. Schaal, "Learning, planning, and control for quadruped locomotion over challenging terrain," The International Journal of Robotics Research, vol. 30, pp. 236-258, 2011.
[16]M. J. Spenko, G. C. Haynes, J. A. Saunders, M. R. Cutkosky, A. A. Rizzi, R. J. Full, et al., "Biologically inspired climbing with a hexapedal robot," J. Field Robot., vol. 25, pp. 223-242, 2008.
[17]M. Palankar and L. Palmer, "A force threshold-based position controller for legged locomotion," Autonomous Robots, vol. 38, pp. 301-316, 2015.
[18]I. Poulakakis, J. A. Smith, and M. Buehler, "Modeling and Experiments of Untethered Quadrupedal Running with a Bounding Gait: The Scout II Robot," The International Journal of Robotics Research, vol. 24, pp. 239-256, April 1, 2005.
[19]J. A. Smith, I. Sharf, and M. Trentini, "Bounding Gait in a Hybrid Wheeled-Leg Robot," in IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5750-5755, 2006.
[20]D. McMordie, M. Buehler, "Towards pronking with a hexapod robot", Proc. 4th Int. Conf. Climbing Walking Robots, pp. 659-666, 2001.
[21]D. Campbell and M. Buehler, "Preliminary Bounding Experiments in a Dynamic Hexapod," in Experimental Robotics VIII, B. Siciliano and P. Dario, Eds., ed Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 612-621, 2003.
[22]J. K. Karpick, J. G. Cham, J. E. Clark, and M. R. Cutkosky, "Stride Period Adaptation for a Biomimetic Running Hexapod," in Robotics Research: The Tenth International Symposium, R. A. Jarvis and A. Zelinsky, Eds., ed Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 133-145, 2003.
[23]D. Koepl, K. Kemper, and J. Hurst, "Force control for spring-mass walking and running," in IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2010, pp. 639-644.
[24]D. Koepl and J. Hurst, "Force control for planar spring-mass running," in IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3758-3763, 2011.
[25]S. Seok, A. Wang, D. Otten, and S. Kim, "Actuator design for high force proprioceptive control in fast legged locomotion," in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1970-1975, 2012.
[26]H. W. Park, M. Y. Chuah, and S. Kim, "Quadruped bounding control with variable duty cycle via vertical impulse scaling," in IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3245-3252, 2014.
[27]P. Hae-Won and K. Sangbae, "Quadrupedal galloping control for a wide range of speed via vertical impulse scaling," Bioinspiration & Biomimetics, vol. 10, p. 025003, 2015.
[28]D. J. Hyun, S. Seok, J. Lee, and S. Kim, "High speed trot-running: Implementation of a hierarchical controller using proprioceptive impedance control on the MIT Cheetah," The International Journal of Robotics Research, August 21, 2014.
[29]C. Semini, V. Barasuol, T. Boaventura, M. Frigerio, M. Focchi, D. G. Caldwell, et al., "Towards versatile legged robots through active impedance control," The International Journal of Robotics Research, vol. 34, pp. 1003-1020, 2015.
[30]T. Boaventura, C. Semini, J. Buchli, M. Frigerio, M. Focchi, and D. G. Caldwell, "Dynamic torque control of a hydraulic quadruped robot," in International Conference on Robotics and Automation (ICRA), pp. 1889-1894, 2012.
[31]C. Semini, N. G. Tsagarakis, E. Guglielmino, M. Focchi, F. Cannella, and D. G. Caldwell, "Design of HyQ - a hydraulically and electrically actuated quadruped robot," Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 225, pp. 831-849, 2011.
[32]D. Renjewski, A. Spröwitz, A. Peekema, M. Jones, and J. Hurst, "Exciting Engineered Passive Dynamics in a Bipedal Robot," IEEE Transactions on Robotics, vol. 31, pp. 1244-1251, 2015.
[33]L.-P. Chao and K.-T. Chen, "Shape optimal design and force sensitivity evaluation of six-axis force sensors," Sensors and Actuators A: Physical, vol. 63, pp. 105-112, 1997.
[34]K. Hoffmann. (1986, 20 July). Applying the Wheatstone Bridge Circuit. Available: http://paginas.fisica.uson.mx/horacio.munguia/aula_virtual/Cursos/Instrumentacion%20II/Documentos/Teoria%20Ctos%20Puentes.PDF
[35]T. C.-H. Lin, "The Development of Multi-Axis Force Sensor Intergrated with Motor and Dynamic Force Feedback Running Gait on Hexapod Robot," Department of Mechanical Engineering, National Taiwan University, 2013.
[36]C.-L. Chen, "Development of a Two-rolling-leg Model with Waist Actuation and Its Application in a Quadruped Robot with Dynamic Gaits," Master, Department of Mechanical Engineering College of Engineering National Taiwan University, 2016.
[37]N. Instruments. (2016, 10 July). Measuring Strain with Strain Gages. Available: http://www.ni.com/white-paper/3642/en/
[38]N. Instruments. (2017, 12,July). RIO MEZZANINE CARD DESIGN GUIDE. Available: http://www.ni.com/pdf/manuals/375536b.pdf
[39]K.-J. Huang, "A novel spring loaded inverted pendulum with rolling contact and its application on developing dynamic jogging gaits in a hexapod robot," Department of Mechanical Engineering, National Taiwan University, 2012.
[40]C.-K. Huang, "Development of Dynamic Legged Models with Rolling Contact and Their Role as Templates for Inducing Dynamic Gaits on a Hexapod Robot," Department of Mechanical Engineering, National Taiwan University, 2014.
[41]H. Ke-Jung, H. Chun-Kai, and L. Pei-Chun, "A simple running model with rolling contact and its role as a template for dynamic locomotion on a hexapod robot," Bioinspiration & Biomimetics, vol. 9, p. 046004, 2014.
[43]H. Chia-Jui, C. K. Huang, and P. C. Lin, "A torque-actuated dissipative spring loaded inverted pendulum model with rolling contact and its use as the template for design and dynamic behavior generation on a hexapod robot," in IEEE International Conference on Robotics and Automation, pp. 5177-5183, 2015.
[44]C.-J. Hu, "Development of a bio-inspired and torque-acutated dissipative spring loaded inverted pendulum model with rolling contact and its application on design, manufacture, and control of a novel multi-legged robot," Department of Mechanical Engineering, National Taiwan University, 2014.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top