[1]S. Keeler, M. Kimchi, amd P. J. Mconey, “Advanced high-strength steels application guidelines V6”, WorldAutoSteel, 2017.
[2]P. J. Armstrong and C. O. Frederick, “A mathematical representation of the multiaxial Bauschinger effect”, GEGB report RD/B/N731. Berkeley Nuclear Laboratories, Material at high temperatures, vol. 24, pp. 1-26, 1966.
[3]J. L. Chaboche, K. Dang-Van, and G. Cordier, “Modelization of the Strain Memory Effect on the Cyclic Hardening of 316 Stainless Steels”, SMiRT-5, Div. L, Paper No. L. 11/3, 1979.
[4]J. L. Chaboche and G. Rousselier, “On the plastic and viscoplastic constitutive equations”, part I and II. ASME Journal of Pressure Vessel Technology, vol. 105, pp. 153-164, 1983.
[5]F. Yoshida, T. Uemori, and K. Fujiwara, “Elastic-plastic behavior of steel sheet under in-plane cyclic tension-compression at large strain”, International Journal of Plasticity, vol. 18, pp. 633-659, 2002.
[6]F. Yoshida and T. Uemori, “A model of large-strain cyclic plasticity describing the Bauschinger effect and workhardening stagnation”, International Journal of Plasticity, vol. 18, pp. 661-686, 2002.
[7]Y. S. Suh, F. I. Saunders, and R. H. Wagoner, “Anisotropic yield functions with plastic-strain-induced anisotropy”, International Journal of Plasticity, vol. 12, pp. 417-438, 1996.
[8]D. C. Ahn, J. W. Yoon, and K. Y. Kim, “Modeling of anisotropic plastic behavior of ferritic stainless steel sheet”, International Journal of Mechanical Sciences, vol. 51, pp. 718-725, 2009.
[9]F. Barlat, J. C. Brem, J. W. Yoon, K. Chung, R. E. Dick, D. J. Lege, F. Pourboghrat, S. H. Choi, and E. Chu, “Plane stress yield function for aluminum alloy sheets-part1”, International Journal of Plasticity, vol. 19, pp. 1297-1319, 2003.
[10]J. W. Yoon, F. Barlat, R. E. Dick, K. Chung, and T. J. Kang, “Plane stress yield function for aluminum alloy sheets—part2”, International Journal of Plasticity, vol. 20, pp. 495-522, 2004.
[11]M. Janssson, L. Nilsson, and K. Simonsson, “On constitutive modeling of aluminum alloys for tube hydroforming applications”, International Journal of Plasticity, vol. 21, pp. 1041-1058, 2005.
[12]H. Wang, M. Wan, X. Wu, and Y. Yan, “The equivalent plastic strain-dependent Yld2000-2d yield function and the experimental verification”, Computational Materials Science, vol. 47, pp. 12-22, 2009.
[13]蘇柏銓, “先進高強度鋼板材料模型與成形工法之研究”, 國立台灣大學機械工程研究所碩士論文, 2015.
[14]R. G. Davies, ““Side-Wall Curl” in High-Strength Steels”, Journal of Applied Metalworking, vol. 3, pp. 120-126, 1984.
[15]R. A. Ayres, “SHAPESET: A process to reduce sidewall curl springback in high-strength steel rails”, Journal of Applied Metalworking, vol. 3, pp. 127-134, 1984.
[16]D. Schmoeckel and M. Beth, “Springback Reduction in Draw-Bending Process of Sheet Metals”, CIRP Annals-Manufacturing Technology, vol. 42, pp. 339-342, 1993.
[17]M. Traversin and R. Kergen, “Closed-loop control of the blank-holder force in deep-drawing: finite-element modeling of its effects and advantages”, Journal of Materials Processing Technology, vol. 50, pp. 306-317, 1995.
[18]M. Sunseri, J. Cao, A. P. Karafillis, and M. C. Boyce, “Accommodation of Springback Error in Channel Forming Using Active Binder Force Control: Numerical Simulations and Experiments”, Journal of Engineering Materials And Technology, vol. 118, pp. 426-435, 1996.
[19]J. Cao, B. Kinsey, and S. A. Solla, “Consistent and minimal springback using a stepped binder force trajectory and neural network control”, Journal of engineering materials and technology, vol. 122, pp. 113-118, 2000.
[20]S. Kitayama, K. Kita, and K. Yamazaki, “Optimization of variable blank holder force trajectory by sequential approximate optimization with RBF network”, The International Journal of Advanced Manufacturing Technology, vol. 61, pp. 1067-1083, 2012.
[21]S. Kitayama, S. Huang, and K. Yamazaki, “Optimization of variable blank holder force trajectory for springback reduction via sequential approximate optimization with radial basis function network”, Structural and Multidisciplinary Optimization, vol. 47, pp. 289-300, 2013.
[22]K. J. Weinmann, J. R. Michler, V. D. Rao, and A. R. Kashani, “Development of a Computer-Controlled Drawbead Simulator for Sheet Metal Forming”, CIRP Annals - Manufacturing Technology, vol. 43, pp. 257-261, 1994.
[23]M. L. Bohn, S. U. Jurthe, and K. J. Weinmann, “A New Multi-point Active Drawbead Forming Die: Model Development for Process Optimization”, SAE Technical Paper, 1998.
[24]R. Li and K. J. Weinmann, “Formability in Non-Symmetric Aluminium Panel Drawing Using Active Drawbeads”, CIRP Annals - Manufacturing Technology, vol. 48, pp. 209-212, 1999.
[25]Z. C. Xia and F. Ren, “An Investigation of Wall Curl Reduction Through Post-Stretch Forming”, ASME 2004 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, pp. 495-502, 2004.
[26]D. Zhou, C. Du, C. K. Hsiung, K. Schmid, F. Ren, and E. Liasi, “UHSS Springback Reduction with Post-Stretch”, AutoSteel, 2016.
[27]C. Y. Wang, X. Y. Zhang, C. Dai, S. Y. Wang, and F. F. Guo, “Controlling Spring Back of High-Strength Steel Based on Shape Adjustable Bead”, ADVANCED HIGH STRENGTH STEEL AND PRESS HARDENING: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE (ICHSU2015), pp. 537-541, 2016.
[28]前田正幸 : Japan Patent JP10244324A, September 14, 1998.
[29]韓建波, 宋相軍, 梁繼才, 李義 : China Patent CN101259499A, September 10, 2008.
[30]李小平, 彭成允, 張俠, 唐麗文, 陳元芳, 呂琳, 胡建軍 : China Patent CN101530882A, September 16, 2009.
[31]李慧, 周杰, 陸演, 楊明 : China Patent CN102151752B, September 2, 2012.
[32]張懃 : China Patent CN202263837U, June 6, 2012.
[33]趙坤民, 胡平, 戴明華, 金榮, 黃波 : China Patent CN103341556A, October 9, 2013.
[34]A. Osumi, J. Iwaya, and T. Yamano : U. S. Patent US7213437A, May 8, 2007.
[35]佟國棟, 張昆, 閻德斌, 紀仕超, 杜祖椿, 劉濤: China Patent CN205551250U, September 7, 2016.
[36]W. Gan and R. H. Wagoner, “Die design method for sheet springback”, International Journal of Mechanical Sciences, vol. 46, pp. 1097-1113, 2004.
[37]R. Lingbeek, J. Huetink, S. Ohnimus, M. Petzoldt, and J. Weiher, “The development of a finite elements based springback compensation tool for sheet metal products”, Journal of Materials Processing Technology, vol. 169, pp. 115-125, 2005.
[38]X. A. Yang and F. Ruan, “A die design method for springback compensation based on displacement adjustment”, International Journal of Mechanical Sciences, vol. 53, pp. 399-406, 2011.
[39]R. Hill, “Constitutive modelling of orthotropic plasticity in sheet metals”, Journal of the Mechanics and Physics of Solids, vol. 38, pp. 405-417, 1990.
[40]F. Barlat and K. Lian, “Plastic behavior and stretchability of sheet metals. Part I: A yield function for orthotropic sheets under plane stress conditions”, International Journal of Plasticity, vol. 5, pp. 51-66, 1989.
[41]F. Barlat, K. Lian, and B. Baudelet, “Plastic behaviour and stretchability of sheet metals. Part II: Effect of yield surface shape on sheet forming limit”, International Journal of Plasticity, vol. 5, pp. 131-147, 1989.
[42]F. Barlat, D. J. Lege, and J. C. Brem, “A six-component yield function for anisotropic materials”, International Journal of Plasticity, vol. 7, pp. 693-712, 1991.
[43]彭彥安, “先進高強度鋼板材料模型特性對回彈影響之研究”, 國立台灣大學機械工程研究所碩士論文, 2014.
[44]蔡恒光, “先進高強度鋼板反覆拉壓與雙軸拉伸變形特性之研究”, 國立台灣大學機械工程研究所博士論文, 2012.[45]ESI, “PAM-STAMP 2015.1 User’s Guide”, 2015.
[46]S. G. Xu, M. L. Bohn, and K. J. Weinmann, “Drawbeads in sheet metal stamping-A review”, SAE Technical Paper, 1997.
[47]張渭川, “沖壓加工資料集”, 全華科技圖書股份有限公司.