跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2025/01/18 03:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝宜達
研究生(外文):I-Ta Hsieh
論文名稱:以非平衡分子動力學模擬探討碲化鉍雙晶界結構對熱傳性質之影響
論文名稱(外文):An Investigation of the Thermal boundary resistance associated with the Twin Boundary in Bismuth Telluride in use of the non-Equilibrium Molecular Dynamics Simulation
指導教授:黃美嬌黃美嬌引用關係
口試日期:2017-07-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:99
中文關鍵詞:非平衡分子動力學碲化鉍雙晶界熱傳導係數界面熱阻
外文關鍵詞:NEMDBismuth TellurideTwin boundaryThermal conductivityThermal boundary resistance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:219
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
碲化鉍是目前研究已經成熟且廣泛應用的常溫熱電材料,本論文採用非平衡分子動力學(NEMD)方法來研究雙晶界結構對碲化鉍材料熱傳性質的影響。模擬中,採用Huang和Kaviany所提出的勢能函數進行模擬,此勢能函數兼具二體與三體勢能及庫倫勢能。
在單晶碲化鉍的模擬中,先以平衡分子動力學(EMD)方法計算原子徑向分佈函數、聲子態密度及色散關係用來確認初始結構及勢能函數的選擇設置是否正確,接著以非均質非平衡分子動力學方法,配合控制熱流量法,進行熱傳導係數的計算。模擬得到的熱傳導係數在定性上與實驗量測值有一致的溫度相依性,定量上則略高於實驗量測值。
在雙晶界碲化鉍的模擬中,本論文分別對三種不同種類的雙晶界碲化鉍進行熱傳導係數及界面熱阻的計算。熱傳導係數的模擬結果顯示,材料中的雙晶界會破壞長波長聲子,使熱傳導係數下降。其中Te1層雙晶界結構最為穩定,故界面熱阻最小;反之,Te2層雙晶界界面熱阻最大。此外,縮短雙晶界的距離可以提高界面熱阻。整體來說,在室溫下,單一雙晶界結構碲化鉍等效熱傳導係數較單晶碲化鉍降低約15%,此與實驗上的觀察是一致的。
Bismuth Telluride (Bi2Te3) is the best thermoelectric material at room temperature. This research applies the equilibrium molecular dynamics (EMD) and the non-equilibrium molecular dynamics (NEMD) simulation methods to investigate the effect of twin boundaries on the phonon properties of Bi2Te3.The potential function suggested by Huang and Kaviany in 2008 is adopted, including the two-body and three-body interactions as well as the Columbic force.
From the EMD simulation results of single crystal Bi2Te3, the radial distribution function, the phonon density of state and the phonon dispersion relation are calculated. The agreement of the calculation results with literature confirms the accuracy of the initial conditions and the appropriateness of the employed potential function. The NEMD simulation results with a controlled heat flux on the other hand provide a calculation of the lattice thermal conductivity. The computed thermal conductivity qualitatively agrees with the experimental measurements, but slightly larger quantitatively.
The simulation results of twinned Bi2Te3 show that twin boundary structure can interfere long mean-free-path phonons and consequently reduce the lattice thermal conductivity. It is also noticed that the interfacial energy and stability of the simulated system differ when the twin boundary occurs at different atomic layers. The Te1-twin boundary structure is the most stable one, resulting in a lowest thermal boundary resistance. Instead, the Te2-twin boundary structure is the most unstable one, corresponding to a highest thermal boundary resistance. Moreover, the shorter distance between two twin boundaries, the larger the effective thermal boundary resistance is. In a word, twin boundaries cause a 15% reduction in the thermal conductivity of the Bi2Te3 investigated, consistent with the experimental observations.
誌 謝 I
中文摘要 II
Abstract III
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1-1 研究背景 1
1-2 文獻回顧 2
1-2-1 實驗量測 2
1-2-2 分子動力學模擬 3
1-3 研究動機與目的 6
1-4 LAMMPS軟體介紹 7
1-5 論文架構 8
第二章 分子動力學理論 9
2-1 碲化鉍晶體結構介紹 9
2-2 勢能函數 12
2-2-1 碲化鉍勢能函數(一) 13
2-2-2 碲化鉍勢能函數(二) 16
2-3 初始與邊界條件 18
2-3-1 初始位置與速度 18
2-3-2 週期性邊界條件 19
2-4 溫度壓力控制方法 20
2-4-1 溫度控制方法 20
2-4-2 壓力控制方法 23
2-5 非平衡分子動力學 24
2-5-1 熱傳導係數計算 26
2-5-2 去除尺寸效應 27
2-6 收斂測試 28
第三章 單晶碲化鉍分子動力學模擬 30
3-1 平衡分子動力學穩態判斷與資料選取 30
3-2 徑向分佈函數 32
3-3 聲子態密度與色散關係 35
3-4 非平衡分子動力學計算 39
3-4-1 模擬時步大小與總時間設置 40
3-4-2 邊界條件 42
3-4-3 冷熱區與薄層厚度選取 43
3-4-4 穩態判斷與資料選取 44
3-4-5 單晶碲化鉍熱傳導係數 47
3-4-6 薄層熱通量跳動分析 51
第四章 雙晶界碲化鉍分子動力學模擬 55
4-1 雙晶界碲化鉍晶體結構介紹 55
4-2 單一雙晶界結構 56
4-2-1 穩態判斷與資料選取 60
4-2-2 熱傳導係數與界面熱阻 62
4-3 兩併排雙晶界結構 68
4-3-1 穩態判斷與資料選取 70
4-3-2 熱傳導係數與界面熱阻 75
第五章 結論與未來展望 89
5-1 結論 89
5-1-1 單晶碲化鉍 89
5-1-2 雙晶界碲化鉍 90
5-2 未來展望 90
參考文獻 92
[1]Z.-G. Chen, G. Han, L. Yang, L. Cheng, and J. Zou, "Nanostructured thermoelectric materials: Current research and future challenge," Progress in Natural Science: Materials International, vol. 22, no. 6, pp. 535-549, 2012.
[2]G. S. Nolas, G. A. Slack, J. L. Cohn, and S. B. Schujman, "The next generation of thermoelectric materials," in Seventeenth International Conference on Thermoelectrics. Proceedings ICT98, 1998, pp. 294-297.
[3]M. S. Dresselhaus et al., "New Directions for Low-Dimensional Thermoelectric Materials," Advanced Materials, vol. 19, no. 8, pp. 1043-1053, 2007.
[4]L. D. Hicks and M. S. Dresselhaus, "Thermoelectric figure of merit of a one-dimensional conductor," Physical Review B, vol. 47, no. 24, pp. 16631-16634, 1993.
[5]L. D. Hicks and M. S. Dresselhaus, "Effect of quantum-well structures on the thermoelectric figure of merit," Physical Review B, vol. 47, no. 19, pp. 12727-12731, 1993.
[6]R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O''Quinn, "Thin-film thermoelectric devices with high room-temperature figures of merit," Nature, 10.1038/35098012 vol. 413, no. 6856, pp. 597-602, 2001.
[7]M.-J. Huang, T.-M. Chang, W.-Y. Chong, C.-K. Liu, and C.-K. Yu, "A new lattice thermal conductivity model of a thin-film semiconductor," International Journal of Heat and Mass Transfer, vol. 50, no. 1, pp. 67-74, 2007.
[8]M.-J. Huang, W.-Y. Chong, and T.-M. Chang, "The lattice thermal conductivity of a semiconductor nanowire," Journal of Applied Physics, vol. 99, no. 11, p. 114318, 2006.
[9]S.-i. Tamura, Y. Tanaka, and H. J. Maris, "Phonon group velocity and thermal conduction in superlattices," Physical Review B, vol. 60, no. 4, pp. 2627-2630, 1999.
[10]R. Venkatasubramanian, "Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures," Physical Review B, vol. 61, no. 4, pp. 3091-3097, 2000.
[11]P. K. Schelling, S. R. Phillpot, and P. Keblinski, "Comparison of atomic-level simulation methods for computing thermal conductivity," Physical Review B, vol. 65, no. 14, p. 144306, 2002.
[12]M. P. Allen and D. J. Tildesley., Computer simulation of liquids. Oxford, 1987.
[13]J. R. Lukes, D. Y. Li, X. G. Liang, and C. L. Tien, "Molecular Dynamics Study of Solid Thin-Film Thermal Conductivity," Journal of Heat Transfer, vol. 122, no. 3, pp. 536-543, 2000.
[14]Y. Chen, D. Li, J. R. Lukes, Z. Ni, and M. Chen, "Minimum superlattice thermal conductivity from molecular dynamics," Physical Review B, vol. 72, no. 17, p. 174302, 2005.
[15]B.-L. Huang and M. Kaviany, "Ab initio," Physical Review B, vol. 77, no. 12, p. 125209, 2008.
[16]B. Qiu and X. Ruan, "Molecular dynamics simulations of lattice thermal conductivity of bismuth telluride using two-body interatomic potentials," Physical Review B, vol. 80, no. 16, p. 165203, 2009.
[17]Y. Tong, F. Yi, L. Liu, P. Zhai, and Q. Zhang, "Molecular dynamics study on thermo-mechanical properties of bismuth telluride bulk," Computational Materials Science, vol. 48, no. 2, pp. 343-348, 2010.
[18]T. Yu, Y. Fa-Jun, L. Li-Sheng, and Z. Qing-Jie, "Molecular Dynamics Simulation of Temperature Effects on the Mechanical Properties of Bi2Te3 Nanowire.," Journal of Wuhan University of Technology, vol. 32, no. 24, 2010.
[19]B. Qiu and X. Ruan, "Thermal conductivity prediction and analysis of few-quintuple Bi2Te3 thin films: A molecular dynamics study," Applied Physics Letters, vol. 97, no. 18, p. 183107, 2010.
[20]B. Qiu, L. Sun, and X. Ruan, "Lattice thermal conductivity reduction in Bi2Te3 quantum wires with smooth and rough surfaces: A molecular dynamics study," Physical Review B, vol. 83, no. 3, p. 035312, 2011.
[21]K. Termentzidis et al., "Structure impact on the thermal and electronic properties of bismuth telluride by ab-initio and molecular dynamics calculations," Journal of Physics: Conference Series, vol. 395, no. 1, p. 012114, 2012.
[22]K. Termentzidis et al., "Large thermal conductivity decrease in point defective Bi2Te3 bulk materials and superlattices," Journal of Applied Physics, vol. 113, no. 1, p. 013506, 2013.
[23]S.-K. Wang, "Molecular dynamics study of thermal conductivity of bismuth telluride. ," Master of Science, Mechanical and Aerospace Engineering, University of Florida, 2013.
[24]C. Yu, G. Zhang, L.-M. Peng, W. Duan, and Y.-W. Zhang, "Thermal transport along Bi2Te3 topological insulator nanowires," Applied Physics Letters, vol. 105, no. 2, p. 023903, 2014.
[25]S. Li, L. Chaput, N. Stein, C. Frantz, D. Lacroix, and K. Termentzidis, "Thermal conductivity of Bi2Te3 tilted nanowires, a molecular dynamics study," Applied Physics Letters, vol. 106, no. 23, p. 233108, 2015.
[26]S. Li, N. Stein, D. Lacroix, and K. Termentzidis, "Thermal conductivity of Bi2Te3 nanowires and nanotubes," in 2015 21st International Workshop on Thermal Investigations of ICs and Systems (THERMINIC), 2015, pp. 1-3.
[27]D. L. Medlin, Q. M. Ramasse, C. D. Spataru, and N. Y. C. Yang, "Structure of the (0001) basal twin boundary in Bi2Te3," Journal of Applied Physics, vol. 108, no. 4, p. 043517, 2010.
[28]D. L. Medlin, A. Morales, and N. Yang, "Twin Boundary Defect Structure in Bismuth Telluride," Sandia National Laboratories, Livermore CA, USA2012.
[29]K.-C. Kim et al., "Free-electron creation at the 60° twin boundary in Bi2Te3," Nature Communications, vol. 7, 2016, Art. no. 12449.
[30]S. Plimpton, "Fast Parallel Algorithms for Short-Range Molecular Dynamics," Journal of Computational Physics, vol. 117, no. 1, pp. 1-19, 1995.
[31]Y. Tong, "Molecular Dynamics Study of Mechanical Properties of Bi2Te3Thermoelectric Material.," Doctor''s Degree in Engineering, Engineering Structure and Mechanics, Wuhan University of Technology, 2010.
[32]M. H. Francombe, "Structure-cell data and expansion coefficients of bismuth telluride," British Journal of Applied Physics, vol. 9, no. 10, p. 415, 1958.
[33]J. R. Wiese and L. Muldawer, "Lattice constants of Bi2Te3-Bi2Se3 solid solution alloys," Journal of Physics and Chemistry of Solids, vol. 15, no. 1, pp. 13-16, 1960.
[34]W. M. Haynes, CRC Handbook of Chemistry and Physics. 2011.
[35]P. M. Morse, "Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels," Physical Review, vol. 34, no. 1, pp. 57-64, 1929.
[36]S. Nosé, "A unified formulation of the constant temperature molecular dynamics methods," The Journal of Chemical Physics, vol. 81, no. 1, pp. 511-519, 1984.
[37]S. Nosé, "A molecular dynamics method for simulations in the canonical ensemble," Molecular Physics, vol. 52, no. 2, pp. 255-268, 1984.
[38]W. G. Hoover, "Canonical dynamics: Equilibrium phase-space distributions," Physical Review A, vol. 31, no. 3, pp. 1695-1697, 1985.
[39]H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, "Molecular dynamics with coupling to an external bath," The Journal of Chemical Physics, vol. 81, no. 8, pp. 3684-3690, 1984.
[40]P. Jund and R. Jullien, "Molecular-dynamics calculation of the thermal conductivity of vitreous silica," Physical Review B, vol. 59, no. 21, pp. 13707-13711, 1999.
[41]D. J. Evans, "Homogeneous NEMD algorithm for thermal conductivity—Application of non-canonical linear response theory," Physics Letters A, vol. 91, no. 9, pp. 457-460, 1982.
[42]A. Tenenbaum, G. Ciccotti, and R. Gallico, "Stationary nonequilibrium states by molecular dynamics. Fourier''s law," Physical Review A, vol. 25, no. 5, pp. 2778-2787, 1982.
[43]T.-M. Chang, "An Investigation of the Lattice Thermal Transport Phenomenon in Low-Dimensional Si/Ge via the Molecular Dynamics Simulation.," Ph.D, Mechanical Engineering, National Taiwan University 2010.
[44]R. J. Stevens, L. V. Zhigilei, and P. M. Norris, "Effects of temperature and disorder on thermal boundary conductance at solid–solid interfaces: Nonequilibrium molecular dynamics simulations," International Journal of Heat and Mass Transfer, vol. 50, no. 19, pp. 3977-3989, 2007.
[45]H. Casimir, "Note on the conduction of heat in crystals," Physica, vol. 5, no. 6, pp. 495-500, 1938.
[46]J. Michalski, "Thermal conductivity of amorphous solids above the plateau: Molecular-dynamics study," Physical Review B, vol. 45, no. 13, pp. 7054-7065, 1992.
[47]H. Rauh, R. Geick, H. Kohler, N. Nucker, and N. Lehner, "Generalized phonon density of states of the layer compounds Bi2Se3 , Bi2Te3, Sb2Te3 and Bi2(Te0.5Se0.5)3 , (Bi0.5Sb0.5)2Te3," Journal of Physics C: Solid State Physics, vol. 14, no. 20, p. 2705, 1981.
[48]P. Heino, "Dispersion and thermal resistivity in silicon nanofilms by molecular dynamics," The European Physical Journal B, vol. 60, no. 2, pp. 171-179, 2007.
[49]V. Y. Trubitsyn and E. B. Dolgusheva, "Molecular dynamics calculations of anharmonic properties of the vibrational spectrum of BCC zirconium under pressure," Physics of the Solid State, vol. 49, no. 7, pp. 1345-1352, 2007.
[50]L. T. Kong, "Phonon dispersion measured directly from molecular dynamics simulations," Computer Physics Communications, vol. 182, no. 10, pp. 2201-2207, 2011.
[51]C. B. Satterthwaite and R. W. Ure, "Electrical and Thermal Properties of Bi2Te3," Physical Review, vol. 108, no. 5, pp. 1164-1170, 1957.
[52]H. J. Goldsmid, "The Thermal Conductivity of Bismuth Telluride," Proceedings of the Physical Society. Section B, vol. 69, no. 2, p. 203, 1956.
[53]H. Kaibe, Y. Tanaka, M. Sakata, and I. Nishida, "Anisotropic galvanomagnetic and thermoelectric properties of n-type Bi2Te3 single crystal with the composition of a useful thermoelectric cooling material," Journal of Physics and Chemistry of Solids, vol. 50, no. 9, pp. 945-950, 1989.
[54]G. E. Shoemake, J. A. Rayne, and R. W. Ure, "Specific Heat of n- and p-Type Bi2Te3 from 1.4 to 90°K," Physical Review, vol. 185, no. 3, pp. 1046-1056, 1969.
[55]N. Peranio, O. Eibl, and J. Nurnus, "Structural and thermoelectric properties of epitaxially grown Bi2Te3 thin films and superlattices," Journal of Applied Physics, vol. 100, no. 11, p. 114306, 2006.
[56]D. L. Medlin, A. Morales, and N. Yang, "Twin Boundary Defect Structure in Bismuth Telluride," Sandia National Laboratories Livermore CA, USA2008.
[57]H. Dong, J. Xiao, R. Melnik, and B. Wen, "Weak phonon scattering effect of twin boundaries on thermal transmission," Scientific Reports, vol. 6, p. 19575, 2016.
[58]L. S. Mitchell and A. C. Anderson, "Low temperature thermal conductivity of twinned and untwinned indium-thallium alloys," Journal of Low Temperature Physics, vol. 91, no. 5, pp. 341-369, 1993.
[59]H. F. Zhan, Y. Y. Zhang, J. M. Bell, and Y. T. Gu, "Thermal conductivity of Si nanowires with faulted stacking layers," Journal of Physics D: Applied Physics, vol. 47, no. 1, p. 015303, 2014.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top