跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/03/17 01:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:高經傑
研究生(外文):Ching-Chieh Kao
論文名稱:移動式感應加熱氣體輔助熱壓製程開發
論文名稱(外文):Hot Embossing of Microstructure with Moving Induction Heating and Gas-Assisted Pressuring
指導教授:楊申語楊申語引用關係
口試日期:2016-07-11
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:146
中文關鍵詞:熱壓印成型氣體輔助施壓移動式感應加熱PDMS模具熱壓繞射元件
外文關鍵詞:Moving Induction heatingHot embossingGas-assisted pressuringPDMS moldDOE
相關次數:
  • 被引用被引用:0
  • 點閱點閱:286
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
熱壓印成型製程簡單、模具及機台成本低和轉寫率高,常用來複製高分子生醫及光學元件的表面微結構。傳統熱壓印成型有兩大問題:第一是板壓容易造成壓力分佈不均; 第二是升降溫耗時導致製程時間長。本研究使用氣體施壓,使壓力均勻; 並使用包覆式感應加熱技術,使升溫快速。為了避免直接感應加熱微結構模具,開發金屬夾心PDMS模具,微結構在PDMS上,夾心金屬受感應加熱。為了使加熱面積不受線圈和功率限制,本研究開發模具移動裝置,達到更大面積的快速加熱;也進一步以風冷強制對流散熱,解決降溫耗時的問題,開發出快速大面積升降溫且均壓的微結構熱壓設備。
本研究首先利用COMSOL分析軟體,模擬包覆式線圈對SUS 420不鏽鋼板感應加熱的表面升溫,觀察在不同模具移動模式下的加熱趨勢; 接著實驗驗證,藉由調整不同區域的停留時間和速度,提升整體溫度均勻性。移動式感應加熱可使面積80×80 mm2的不鏽鋼板在36 s內由40℃升溫到210℃,且溫差小於20℃。
本研究設計製造直徑195 mm,長221 mm的壓力腔體,將不鏽鋼板夾心PDMS模具、移動式平台及感應加熱線圈裝置其內,實際壓印23.5 "μm" 寬、48.6 "μ" m高的週期性V-cut 微結構於長寬厚80×80×0.18 mm3的PC板上,轉寫率可達95%以上,生產週期時間少於4 mins。微結構壓印Fresnel lens以及DOE繞射元件的成品皆有良好的光學成像,證實移動式感應加熱氣體輔助熱壓應用於微結構熱壓印的潛力。
Hot embossing is a low cost and flexible method for fabricating micro/nano structures on the polymer. However, there are two problems in the conventional hot embossing process. First, the heating by the platens causes long cycle time. Second, the pressure provided by the platens is not uniform. In many studies, induction heating has been used to increase the heating rate in the hot embossing process. However, heating area is greatly limited by the size of the induction coil and the power of induction heater. In this study, moving induction heating was proposed and demonstrated. In addition, gas-assisted pressuring was employed to provide uniform embossing pressure.
The PDMS mold with the microstructure on its surface and SUS 420 plate in the center as the insert was made. A mechanism was designed and implemented to move the platform in and out the wrapped coil, on which the sealed box for mold/substrate was placed. A chamber of 195 mm diameter and 221 mm length was machined. The movable platform, the sealed box with mold/substrate stack, wrapped coil and cooling fan were all implemented in the gas chamber. The wrapping coil can heat the PDMS mold with SUS 420 plate insert from 40℃ to 210℃ in 36 s. The periodic V-cut structures with depth of 23.5 "μ" m and height of 48.6 "μ" m can be replicated on PC substrate using this moving induction heating and gas-assisted pressuring hot embossing. Replication rates were all above 95% and the cycle time was less than 4 mins. Other microstructures for Fresnel lens and DOE structures were also successfully replicated. This study proves the potential of this moving induction heating and gas-assisted pressuring hot embossing for fast fabrication of microstructure onto polymeric substrates.
誌謝 I
摘要 II
Abstract III
目錄 V
圖目錄 IX
表目錄 XV
第 1 章 導論 1
1.1 前言 1
1.2 傳統微熱壓成型 3
1.3 氣體輔助微熱壓成型 5
1.4 快速加熱技術 6
1.5 研究動機與目的 7
1.5.1 研究動機 7
1.5.2 研究目的 7
1.6 論文內容與架構 8
第 2 章 文獻回顧 9
2.1 壓印成型技術 9
2.1.1 紅外線加熱技術 9
2.1.2 雷射壓印成型技術 11
2.1.3 超音波震動熱壓成型技術 12
2.1.4 高週波感應加熱技術 13
2.2 感應加熱的理論基礎 21
2.2.1 電磁感應 21
2.2.2 焦耳定律、歐姆定律與電功率 23
2.2.3 磁滯損失與渦流損 25
2.2.4 集膚效應(Skin Effect) 27
2.2.5 鄰近效應(Proximity Effect) 30
2.2.6 末端效應與邊界效應 31
2.3 感應加熱的線圈設計 33
第 3 章 移動式感應加熱氣輔微熱壓製程規劃 35
3.1 研究架構 35
3.2 感應加熱氣體輔助熱壓流程 37
3.2.1 感應加熱氣輔熱壓步驟流程 37
3.3 感應加熱氣輔熱壓機構設計與設備 41
3.3.1 高壓腔體 42
3.3.2 冷卻系統 42
3.3.3 高週波線圈 45
3.3.4 氣密盒 46
3.3.5 移動平台 47
3.3.6 高週波感應產生器模組 48
3.4 實驗材料與量測儀器 50
3.4.1 模具與壓印材料 50
3.4.2 壓力量測設備 52
3.4.3 熱電偶溫度資料擷取器 53
3.4.4 3D雷射共焦顯微鏡 54
3.4.5 掃描式電子顯微鏡(SEM) 57
3.4.6 表面粗度量測儀 58
第 4 章 感應加熱線圈設計及移動路徑分析 59
4.1 感應加熱模擬分析與線圈設計 59
4.1.1 COMSOL感應加熱模擬與線圈設計建置 59
4.1.2 模擬結果 62
4.2 溫度量測與模具設置 70
4.2.1 溫度量測與模擬結果 71
4.2.2 模具製作 71
4.2.1 溫度量測校正 76
4.3 壓印溫度控制 77
4.3.1 功率與溫度關係 77
4.3.2 移動路徑設計與實驗結果比較 81
4.3.3 壓印溫度設置 86
4.4 本章結論 89
第 5 章 移動式感應加熱氣體輔助壓印探討與應用 90
5.1 熱壓製程壓力均勻性探討 90
5.2 微米結構壓印探討 93
5.2.1 壓印參數設置 93
5.2.2 V型溝槽(V-cut) 93
5.2.3 微透鏡陣列 107
5.2.4 Fresnel lens壓印 110
5.2.5 DOE繞射光學元件 113
5.3 本章結論 122
第 6 章 結論與未來展望 124
6.1 結論 124
6.2 未來展望 124
參考文獻 126
附錄A 冷卻速率方程式 131
附錄B Matlab 路徑計算Code 133
附錄C V-cut OM圖 139
附錄D V-cut 成品九點表面輪廓圖 140
[1]Matthias Putz and Jan Edelmann, “Precision- and micromanufacturing,” Fraunhofer Institute for Machine Tools and Forming Technology IWU.
[2]S.-J. Liu, Y.-C. Huang, S.-Y. Yang, and K.-H. Hsieh, “Rapid fabrication of surface-relief plastic diffusers by ultrasonic embossing,” Opt. Laser Technol., vol. 42, no. 5, pp. 794–798, 2010.
[3]C.-J. Ting, M.-C. Huang, H.-Y. Tsai, C.-P. Chou, and C.-C. Fu, “Low cost fabrication of the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology,” Nanotechnology, vol. 19, no. 20, p. 205301, 2008.
[4]P. W. Leech, R. A. Lee, and T. J. Davis, “Printing via hot embossing of optically variable images in thermoplastic acrylic lacquer,” Microelectron. Eng., vol. 83, no. 10, pp. 1961–1965, 2006.
[5]H. Gao, H. Tan, W. Zhang, K. Morton, and S. Y. Chou, “Air cushion press for excellent uniformity, high yield, and fast nanoimprint across a 100 mm field,” Nano Lett., vol. 6, no. 11, pp. 2438–2441, Nov. 2006.
[6]張哲豪, “流體微熱壓製程開發研究,”臺灣大學博士論文, 2004.
[7]鄭芳松, “氣體輔助PDMS模具壓印製程開發研究.”臺灣大學博士論文, 2007.
[8]Xie, P., He, P., Yen, Y.-C., Kwak, K.J., Gallego-Perez, D., Chang, L., Liao, W., Yi, A., Lee, L.J., “Rapid hot embossing of polymer microstructures using carbide-bonded graphene coating on silicon stampers,” Surf. Coat. Technol., vol. 258, pp. 174–180, 15 2014.
[9]K. Seunarine, N. Gadegaard, M. O. Riehle, and C. D. W. Wilkinson, “Optical heating for short hot embossing cycle times,” Microelectron. Eng., vol. 83, no. 4–9, pp. 859–863, 2006.
[10]Q. Chen, L. Zhang, and G. Chen, “Far infrared-assisted embossing and bonding of poly(methyl methacrylate) microfluidic chips,” RSC Adv., vol. 4, no. 99, pp. 56440–56444, Oct. 2014.
[11]M. Ehrhardt, P. Lorenz, F. Frost, and K. Zimmer, “Laser Embossing of Micro-and Submicrometer Surface Structures in Copper,” Phys. Procedia, vol. 39, pp. 735–742, 2012.
[12]J.-C. Hung, Y.-P. Tsai, and C. Hung, “Development of a new apparatus for ultrasonic vibration-assisted glass hot embossing process,” Precis. Eng., vol. 37, no. 1, pp. 222–227, 2013.
[13]S.-C. Chen, P. S. Minh, J.-A. Chang, S.-W. Huang, and C.-H. Huang, “Mold temperature control using high-frequency proximity effect induced heating,” Int. Commun. Heat Mass Transf., vol. 39, no. 2, pp. 216–223, 2012.
[14]H.-L. Lin, S.-C. Chen, M.-C. Jeng, P. S. Minh, J.-A. Chang, and J.-R. Hwang, “Induction heating with the ring effect for injection molding plates,” Int. Commun. Heat Mass Transf., vol. 39, no. 4, pp. 514–522, 2012.
[15]M.-S. Huang and N.-S. Tai, “Experimental rapid surface heating by induction for micro-injection molding of light-guided plates,” J. Appl. Polym. Sci., vol. 113, no. 2, pp. 1345–1354, Jul. 2009.
[16]S.-K. Hong, Y.-M. Heo, and J. Kang, “Replication of polymeric micro patterns by rapid thermal pressing with induction heating apparatus,” in 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2008. NEMS 2008, 2008, pp. 911–915.
[17]J. Yanagimoto and K. Ikeuchi, “Sheet forming process of carbon fiber reinforced plastics for lightweight parts,” CIRP Ann. - Manuf. Technol., vol. 61, no. 1, pp. 247–250, 2012.
[18]A. Rochman, A. Frick, and P. Martin, “An alternative method for processing high viscosity polymers. I. Development and feasibility study,” Polym. Eng. Sci., vol. 52, no. 10, pp. 2114–2121, Oct. 2012.
[19]T. J. Ahmed, D. Stavrov, H. E. N. Bersee, and A. Beukers, “Induction welding of thermoplastic composites—an overview,” Compos. Part Appl. Sci. Manuf., vol. 37, no. 10, pp. 1638–1651, Oct. 2006.
[20]蔡宗鴻, “感應加熱技術輔助微結構熱壓印成形之研究,” 國立高雄第一科技大學碩士論文, 2013.
[21]M.-S. Huang and Y.-L. Huang, “Effect of multi-layered induction coils on efficiency and uniformity of surface heating,” Int. J. Heat Mass Transf., vol. 53, no. 11–12, pp. 2414–2423, May 2010.
[22]S.-C. Chen, W.-R. Jong, Y.-J. Chang, J.-A. Chang, and J.-C. Cin, “Rapid mold temperature variation for assisting the micro injection of high aspect ratio micro-feature parts using induction heating technology,” J. Micromechanics Microengineering, vol. 16, pp. 1783–1791, Sep. 2006.
[23]E. Roland, P. Damien, F. José, and H. Rémi, “3D inductive phenomena modeling,” Proceedings of the COMSOL Users Conference, 2006.
[24]林司牧, “必歐-沙伐定律 | 科學Online – 科技部高瞻自然科學教學資源平台.” [Online]. Available: http://highscope.ch.ntu.edu.tw/wordpress/?p=48077. [Accessed: 12-Jan-2017].
[25]P. Robert, Electrical and Magnetic Properties of Materials. Artech House Publishers, 1988.
[26]S. L. Semiatin, Elements of Induction Heating: Design, Control, and Applications. ASM International, 1988.
[27]王尊信, “磁滯曲線,” 科學online, 23-Jun-2011. .
[28]蘇卓盛, “應用於感應加熱的負載並聯共振電流型反流器設計與研製,” 中原大學碩士論文, 2003.
[29]沈文揚, “外周包覆式磁場感應加熱應用於模具快速加熱之研究,” 中原大學碩士論文, 2010.
[30]Christian Wolff, “Skin-Effect.” [Online]. Available: http://www.radartutorial.eu/03.linetheory/tl07.en.html. [Accessed: 13-Jan-2017].
[31]徐智楓, “合金化爐高週波感應加熱器特性分析與模擬,” 國立高雄應用科技大學碩士論文, 2011.
[32]V. Rudnev, D. Loveless, R. L. Cook, and M. Black, Handbook of Induction Heating. CRC Press, 2002.
[33]G. E. Totten, K. Funatani, and L. Xie, Handbook of Metallurgical Process Design. CRC Press, 2004.
[34]S.-C. Nian, M.-S. Huang, and T.-H. Tsai, “Enhancement of induction heating efficiency on injection mold surface using a novel magnetic shielding method,” Int. Commun. Heat Mass Transf., vol. 50, pp. 52–60, Jan. 2014.
[35]F. W. Curtis, High-Frequency Induction Heating, 2nd edition. McGraw-Hill Book Company, 1950.
[36]L. Jakubovičová, G. Andrej, K. Peter, and S. Milan, “Optimization of the Induction Heating Process in Order to Achieve Uniform Surface Temperature,” Procedia Eng., vol. 136, pp. 125–131, Spring 2016.
[37]施養旻, “高週波感應快速加熱與氣體均勻施壓應用於壓印複製雙面微結構製程開發,” 台灣大學碩士論文, 2016.
[38]H.-A. Yang, C.-W. Lin, C.-Y. Peng, and W. Fang, “On the selective magnetic induction heating of micron scale structures,” J. Micromechanics Microengineering, vol. 16, no. 7, p. 1314, 2006.
[39]S. Lan et al., “A parameter study on the micro hot-embossing process of glassy polymer for pattern replication,” Microelectron. Eng., vol. 86, no. 12, pp. 2369–2374, Dec. 2009.
[40]J. Wang, P. Yi, Y. Deng, L. Peng, X. Lai, and J. Ni, “Recovery behavior of thermoplastic polymers in micro hot embossing process,” J. Mater. Process. Technol., vol. 243, pp. 205–216, May 2017.
[41]S.-C. Nian, T.-H. Tsai, and M.-S. Huang, “Novel inductive hot embossing for increasing micromolding efficiency,” Int. Commun. Heat Mass Transf., vol. 70, pp. 38–46, 2016.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊