跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/01/14 18:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:祝華杰
研究生(外文):Huajie Zhu
論文名稱:車削鈦合金之切屑控制探討
論文名稱(外文):The Study of Chip Control in Turning Titanium Alloy
指導教授:廖運炫
指導教授(外文):Yunn-Shiuan Liao
口試日期:2017-07-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:91
中文關鍵詞:車削Ti-6Al-4V切屑控制斷屑槽
外文關鍵詞:lathe turningTi-6Al-4Vchip controlchip breaker
相關次數:
  • 被引用被引用:1
  • 點閱點閱:172
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
Ti-6Al-4V具有優異的物理和機械性質並具有生物相容性。隨著社會生產力的發展,鈦合金不僅僅應用於航空和軍事領域,正越來越多的應用在生活的各個方面。但是由於其特殊的材料特性使得其加工難度大,加工成本高。這其中鈦合金難斷屑的問題一直困擾業界,長而堅韌的切屑阻礙了加工效率的提高,影響工件的表面粗糙度,降低刀具的使用壽命。
本文旨在為Ti-6Al-4V的切屑控制找出合理的方案。首先對Ti-6Al-4V的切削力分別隨進給、切深、切速這三個切削參數進行討論,與切屑的形態進行比較;Ti-6Al-4V的切屑以螺旋狀(Helical)為主,最終在進給達到0.31mm/rev時,切屑有變為C型斷屑的趨勢。刀具適用的切削條件內,Ti-6Al-4V切屑與刀面的接觸距離不到1mm。根據本研究發現適當增大進給導致切屑流動角增大;適當減小車削速度導致上捲半徑減小,側捲半徑增大;適當減小車削深度導致上捲半徑減小,側捲半徑增大, 並搭配凹槽(Groove)型斷屑槽就有希望使得切屑被引導撞到刀腹面,進而在應力應變增大到極限值之後發生斷裂。本文還推導出了適用於金屬切削的斷屑準據,並用1045中碳鋼和304不鏽鋼初步驗證了其正確性。最後推導出要使得Ti-6Al-4V在小於0.2mm/rev的進給下斷屑,斷屑槽寬度要小於1.2mm,但是目前商用斷屑器的斷屑槽寬度都大於1.5mm。所以,干切削條件下Ti-6Al-4V,在刀具廠商推薦的切削範圍內,Ti-6Al-4V難以自行斷屑。
With the development of social productive forces, application of titanium alloys is not only confined to the field of aerospace and military, but also is increasingly being used in the production of all aspects of life. However, because of its unique material properties, we can not get better processing efficiency and lower processing costs. Among all these puzzles, the problem of chip control of Titanium alloys(Ti-6Al-4V) has been troubling the manufacturing industry. Long and tough chips hinder the improvement of processing efficiency, affecting the surface roughness of the workpiece, reducing tool life.
This research aims to find a reasonable solution for the chip control of Ti-6Al-4V. First, the cutting forces of Ti-6Al-4V were discussed with the three cutting parameters of feed, depth of cut and cutting speed respectively, comparing to the shape of the chips; Most of the chip shapes are helical. Finally, when the feed rate reaches 0.25mm/rev, chip has the tendency to become C-type breaking chip. the contact distance between the chip and tool face is less than 1mm in common turning conditions. We need to be reduced, to be increased, increase the chip flow angle appropriately and with the design of the Groove-type chip breaker at the same time to guide the chip collision to the flank face. According to this study found that increasing the feed rate appropriately causes increasing; decreasing the cutting speed appropriately causes decreasing, increasing; decreasing depth of cut appropriately causes decreasing, increasing, it is possible to guide the chip collision to the flank face. Finally, it is deduced that if Ti-6Al-4V chip breaks automatically under less than 0.2 mm / rev feed rate, we need the chip breaker width W less than 1.2mm, but the current commercial chip breaker chip breaker width is greater than 1.5mm. So, in dry cutting condition, in the cutting range recommended by the tool manufacturer, Ti-6Al-4V chip is difficult to break automatically.
誌謝 I
中文摘要 II
ABSTRACT III
目錄 IV
圖目錄 VI
表目錄 IX
第 1 章 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.3 研究目的 8
1.4 本文架構 9
第 2 章 相關理論 10
2.1 切削力學[29] 10
2.2 切屑形狀的不穩定性和適應能力 15
2.3 螺旋切屑形狀的決定 16
2.4 切屑形成與分類 20
2.5 刀具材料性質[38] 23
2.6 關於切屑折斷的理論 24
2.7 鈦合金性質 24
2.7.1 添加元素對鈦合金的影響 24
2.7.2 鈦合金的分類及性能特點 25
2.7.3 鈦合金的加工特性 31
第 3 章 實驗設備與方法 36
3.1 實驗設備 36
3.2 實驗規劃 46
3.2.1 切削力與切屑形態實驗安排 47
3.2.2 有無斷屑槽刀片對切屑影響探討 49
3.2.3 切屑流動狀態實驗安排 50
3.2.4 切屑最終形態實驗安排 50
第 4 章 實驗結果與討論 51
4.1 切削力與切屑形態的實驗結果與討論 51
4.1.1 切削力隨進給量的變化規律實驗 51
4.1.2 切削力隨切削深度的變化規律實驗 52
4.1.3 切削力隨切削速度的變化規律實驗 53
4.1.4 切屑形態的分析歸納與建議 56
4.2 有無斷屑槽刀片之對切屑影響探討 66
4.3 切屑運動規律 71
4.3.1 切屑流動隨進給的變化規律 71
4.3.2 切屑流動隨切速的變化規律 73
4.3.3 切屑流動隨切深的變化規律 75
4.3.4 斷屑槽設計之理論分析及建議 77
4.3.5 Ti-6Al-4V在幹切削條件下難以斷屑斷分析 85
第 5 章 結論與建議 87
第 6 章 未來展望 88
參考文獻 89
[1] Smith, W.F., Structure and properties of engineering alloys. 1993: McGraw-Hill.
[2]Boyer, R., An overview on the use of titanium in the aerospace industry. Materials Science and Engineering: A, 1996. 213(1-2): p. 103-114.
[3] Boyer, H.E. and T.L. Gall, Metals handbook; desk edition. 1985.
[4]Ezugwu, E. and Z. Wang, Titanium alloys and their machinability—a review. Journal of materials processing technology, 1997. 68(3): p. 262-274.
[5]Narutaki, N., et al., Study on machining of titanium alloys. CIRP Annals-Manufacturing Technology, 1983. 32(1): p. 65-69.
[6]Ma, W., X. Chen, and F. Shuang, The chip-flow behaviors and formation mechanisms in the orthogonal cutting process of Ti6Al4V alloy. Journal of the Mechanics and Physics of Solids, 2017. 98: p. 245-270.
[7]Bermingham, M., et al., New observations on tool life, cutting forces and chip morphology in cryogenic machining Ti-6Al-4V. International Journal of Machine Tools and Manufacture, 2011. 51(6): p. 500-511.
[8]Kluft, W., et al., Present knowledge of chip control. Annals of the CIRP, 1979. 28(2): p. 441-455.
[9]LI, B., On the mechanism of chip breaking. Journal of Engineering for Industry, 1979. 101: p. 241.
[10]Zhang, Y. and J. Peklenik, Chip curl, chip breaking and chip control of the difficult-to-cut materials. CIRP Annals-Manufacturing Technology, 1980. 29(1): p. 79-83.
[11]Jiang, C., Y. Zhang, and Z. Chi, Experimental research of the chip flow direction and its application to the chip control. CIRP Annals-Manufacturing Technology, 1984. 33(1): p. 81-84.
[12]Fenton, R. and P. Oxley, Mechanics of orthogonal machining: predicting chip geometry and cutting forces from work-material properties and cutting conditions. Proceedings of the Institution of Mechanical Engineers, 1969. 184(1): p. 927-942.
[13]Lin, G., et al., Predicting cutting forces for oblique machining conditions. Proceedings of the Institution of Mechanical Engineers, 1982. 196(1): p. 141-148.
[14] Nakayama, K., A study on chip-breaker. Bulletin of JSME, 1962. 5(17): p. 142-150.
[15]Spaans, C., The fundamentals of three-dimensional chip curl, chip breaking and chip control. 1971, TU Delft, Delft University of Technology.
[16]Deiab, I., S.W. Raza, and S. Pervaiz, Analysis of lubrication strategies for sustainable machining during turning of titanium Ti-6Al-4V alloy. Procedia CIRP, 2014. 17: p. 766-771.
[17]Kahles, J., et al., Machining of titanium alloys. JOM Journal of the Minerals, Metals and Materials Society, 1985. 37(4): p. 27-35.
[18]陳建嶺, et al., 鈦合金高速切削切屑形成機理的有限元分析. 組合機床與自動化加工技術, 2007(01): p. 25-28+31.
[19]陸豐瑋, et al., 車削TC4鈦合金的刀具磨損與切屑形態分析. 航太製造技術, 2009(03): p. 18-21.
[20]Barry, J. and G. Byrne, The mechanisms of chip formation in machining hardened steels. Transactions-American Society of Mechanical Engineers Journal of Manufacturing Science and Engineering, 2002. 124(3): p. 528-535.
[21]Zener, C. and J.H. Hollomon, Effect of strain rate upon plastic flow of steel. Journal of Applied physics, 1944. 15(1): p. 22-32.
[22]王敏傑, 段春爭, and 劉洪波, 正交切削切屑形成中絕熱剪切行為的實驗研究. 中國機械工程, 2004(18): p. 7-10.
[23]Moisan, A.L., Hard turning: chip formation mechanisms and metallurgical aspects. 2000.
[24]Hartung, P.D., B. Kramer, and B. Von Turkovich, Tool wear in titanium machining. CIRP Annals-Manufacturing Technology, 1982. 31(1): p. 75-80.
[25]Machado, A. and J. Wallbank, The effects of a high-pressure coolant jet on machining.Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 1994. 208(1): p. 29-38.
[26]Zhao, Z. and S. Hong, Cooling strategies for cryogenic machining from a materials viewpoint. Journal of materials engineering and performance, 1992. 1(5): p. 669-678.
[27]Hong, S.Y. and Y. Ding, Cooling approaches and cutting temperatures in cryogenic machining of Ti-6Al-4V. International Journal of Machine Tools and Manufacture, 2001. 41(10): p. 1417-1437.
[28]Hong, S.Y., Y. Ding, and W.-c. Jeong, Friction and cutting forces in cryogenic machining of Ti–6Al–4V. International Journal of Machine Tools and Manufacture, 2001. 41(15): p. 2271-2285.
[29] Shaw, M.C., Metal cutting principles. Vol. 2. 2005: Oxford university press New York.
[30]Okuyama, S., Y. Nakamura, and S. Kawamura, Cooling action of grinding fluid in shallow grinding. International journal of machine tools and manufacture, 1993. 33(1): p. 13-23.
[31]Machado, A. and J. Wallbank, The effect of extremely low lubricant volumes in machining. Wear, 1997. 210(1-2): p. 76-82.
[32]Yamazaki, T., et al., Cooling air cutting of Ti-6Al-4V alloy. Journal-Japan Institute of Light Metals, 2003. 53(10): p. 416-420.
[33]Nakayama, K., Basic Rules on the Form of Chip Metal Cutting. CIRP Ann., 1978. 27(1): p. 17.
[34]Nakayama, K., Chip control in metal cutting. Bulletin of the Japan Society of Precision Engineering, 1984. 18(2): p. 97-103.
[35]Van Luttervelt, C. and A. Pekelharing, Chip formation in machining operation at small diameter. Annals of the CIRP, 1976. 25(1): p. 71-76.
[36]Nakayama, K., M. Arai, and T. Kanda, Machining characteristics of hard materials. CIRP Annals-Manufacturing Technology, 1988. 37(1): p. 89-92.
[37]Zhen-Bin, H. and R. Komanduri, On a thermomechanical model of shear instability in machining. CIRP Annals-Manufacturing Technology, 1995. 44(1): p. 69-73.
[38] 洪良德, 切削刀具學. 2008: 全華圖書股份有限公司.
[39] 中山一雄, 金 屬 切 削 加 工 理 論. 北 京: 機 械.
[40] Donachie, M.J., Titanium: a technical guide. 2000: ASM international.
[41]彭豔萍, et al., 國外航空鈦合金的發展應用及其特點分析. 材料工程, 1997(10): p. 3-6.
[42]劉瑩, 曲周德, and 王本賢, 鈦合金TC4的研究開發與應用. 兵器材料科學與工程, 2005(01): p. 47-50.
[43] 金紅, 民用鈦合金的發展前景和方向. 鈦工業進展, 1998(04): p. 6-7.
[44]趙樹萍 and 呂雙坤, 鈦合金在航空航太領域中的應用. 鈦工業進展, 2002(06): p. 18-21.
[45]Dearnley, P. and A. Grearson, Evaluation of principal wear mechanisms of cemented carbides and ceramics used for machining titanium alloy IMI 318. Materials Science and Technology, 1986. 2(1): p. 47-58.
[46]Takeyama, H., H. Sekiguchi, and K. Takada, One approach for optimizing control in turning. J. of JSPE, 1970. 36(5): p. 311-317.
[47]Takayama, H., H. Sekiguchi, and H. Takada, One solution for chip hazard in turning-study on automatic programming for numerically controlled machines (first report), J. JSPE, 1970. 36(2): p. 150-156.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top