|
[1] Smith, W.F., Structure and properties of engineering alloys. 1993: McGraw-Hill. [2]Boyer, R., An overview on the use of titanium in the aerospace industry. Materials Science and Engineering: A, 1996. 213(1-2): p. 103-114. [3] Boyer, H.E. and T.L. Gall, Metals handbook; desk edition. 1985. [4]Ezugwu, E. and Z. Wang, Titanium alloys and their machinability—a review. Journal of materials processing technology, 1997. 68(3): p. 262-274. [5]Narutaki, N., et al., Study on machining of titanium alloys. CIRP Annals-Manufacturing Technology, 1983. 32(1): p. 65-69. [6]Ma, W., X. Chen, and F. Shuang, The chip-flow behaviors and formation mechanisms in the orthogonal cutting process of Ti6Al4V alloy. Journal of the Mechanics and Physics of Solids, 2017. 98: p. 245-270. [7]Bermingham, M., et al., New observations on tool life, cutting forces and chip morphology in cryogenic machining Ti-6Al-4V. International Journal of Machine Tools and Manufacture, 2011. 51(6): p. 500-511. [8]Kluft, W., et al., Present knowledge of chip control. Annals of the CIRP, 1979. 28(2): p. 441-455. [9]LI, B., On the mechanism of chip breaking. Journal of Engineering for Industry, 1979. 101: p. 241. [10]Zhang, Y. and J. Peklenik, Chip curl, chip breaking and chip control of the difficult-to-cut materials. CIRP Annals-Manufacturing Technology, 1980. 29(1): p. 79-83. [11]Jiang, C., Y. Zhang, and Z. Chi, Experimental research of the chip flow direction and its application to the chip control. CIRP Annals-Manufacturing Technology, 1984. 33(1): p. 81-84. [12]Fenton, R. and P. Oxley, Mechanics of orthogonal machining: predicting chip geometry and cutting forces from work-material properties and cutting conditions. Proceedings of the Institution of Mechanical Engineers, 1969. 184(1): p. 927-942. [13]Lin, G., et al., Predicting cutting forces for oblique machining conditions. Proceedings of the Institution of Mechanical Engineers, 1982. 196(1): p. 141-148. [14] Nakayama, K., A study on chip-breaker. Bulletin of JSME, 1962. 5(17): p. 142-150. [15]Spaans, C., The fundamentals of three-dimensional chip curl, chip breaking and chip control. 1971, TU Delft, Delft University of Technology. [16]Deiab, I., S.W. Raza, and S. Pervaiz, Analysis of lubrication strategies for sustainable machining during turning of titanium Ti-6Al-4V alloy. Procedia CIRP, 2014. 17: p. 766-771. [17]Kahles, J., et al., Machining of titanium alloys. JOM Journal of the Minerals, Metals and Materials Society, 1985. 37(4): p. 27-35. [18]陳建嶺, et al., 鈦合金高速切削切屑形成機理的有限元分析. 組合機床與自動化加工技術, 2007(01): p. 25-28+31. [19]陸豐瑋, et al., 車削TC4鈦合金的刀具磨損與切屑形態分析. 航太製造技術, 2009(03): p. 18-21. [20]Barry, J. and G. Byrne, The mechanisms of chip formation in machining hardened steels. Transactions-American Society of Mechanical Engineers Journal of Manufacturing Science and Engineering, 2002. 124(3): p. 528-535. [21]Zener, C. and J.H. Hollomon, Effect of strain rate upon plastic flow of steel. Journal of Applied physics, 1944. 15(1): p. 22-32. [22]王敏傑, 段春爭, and 劉洪波, 正交切削切屑形成中絕熱剪切行為的實驗研究. 中國機械工程, 2004(18): p. 7-10. [23]Moisan, A.L., Hard turning: chip formation mechanisms and metallurgical aspects. 2000. [24]Hartung, P.D., B. Kramer, and B. Von Turkovich, Tool wear in titanium machining. CIRP Annals-Manufacturing Technology, 1982. 31(1): p. 75-80. [25]Machado, A. and J. Wallbank, The effects of a high-pressure coolant jet on machining.Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 1994. 208(1): p. 29-38. [26]Zhao, Z. and S. Hong, Cooling strategies for cryogenic machining from a materials viewpoint. Journal of materials engineering and performance, 1992. 1(5): p. 669-678. [27]Hong, S.Y. and Y. Ding, Cooling approaches and cutting temperatures in cryogenic machining of Ti-6Al-4V. International Journal of Machine Tools and Manufacture, 2001. 41(10): p. 1417-1437. [28]Hong, S.Y., Y. Ding, and W.-c. Jeong, Friction and cutting forces in cryogenic machining of Ti–6Al–4V. International Journal of Machine Tools and Manufacture, 2001. 41(15): p. 2271-2285. [29] Shaw, M.C., Metal cutting principles. Vol. 2. 2005: Oxford university press New York. [30]Okuyama, S., Y. Nakamura, and S. Kawamura, Cooling action of grinding fluid in shallow grinding. International journal of machine tools and manufacture, 1993. 33(1): p. 13-23. [31]Machado, A. and J. Wallbank, The effect of extremely low lubricant volumes in machining. Wear, 1997. 210(1-2): p. 76-82. [32]Yamazaki, T., et al., Cooling air cutting of Ti-6Al-4V alloy. Journal-Japan Institute of Light Metals, 2003. 53(10): p. 416-420. [33]Nakayama, K., Basic Rules on the Form of Chip Metal Cutting. CIRP Ann., 1978. 27(1): p. 17. [34]Nakayama, K., Chip control in metal cutting. Bulletin of the Japan Society of Precision Engineering, 1984. 18(2): p. 97-103. [35]Van Luttervelt, C. and A. Pekelharing, Chip formation in machining operation at small diameter. Annals of the CIRP, 1976. 25(1): p. 71-76. [36]Nakayama, K., M. Arai, and T. Kanda, Machining characteristics of hard materials. CIRP Annals-Manufacturing Technology, 1988. 37(1): p. 89-92. [37]Zhen-Bin, H. and R. Komanduri, On a thermomechanical model of shear instability in machining. CIRP Annals-Manufacturing Technology, 1995. 44(1): p. 69-73. [38] 洪良德, 切削刀具學. 2008: 全華圖書股份有限公司. [39] 中山一雄, 金 屬 切 削 加 工 理 論. 北 京: 機 械. [40] Donachie, M.J., Titanium: a technical guide. 2000: ASM international. [41]彭豔萍, et al., 國外航空鈦合金的發展應用及其特點分析. 材料工程, 1997(10): p. 3-6. [42]劉瑩, 曲周德, and 王本賢, 鈦合金TC4的研究開發與應用. 兵器材料科學與工程, 2005(01): p. 47-50. [43] 金紅, 民用鈦合金的發展前景和方向. 鈦工業進展, 1998(04): p. 6-7. [44]趙樹萍 and 呂雙坤, 鈦合金在航空航太領域中的應用. 鈦工業進展, 2002(06): p. 18-21. [45]Dearnley, P. and A. Grearson, Evaluation of principal wear mechanisms of cemented carbides and ceramics used for machining titanium alloy IMI 318. Materials Science and Technology, 1986. 2(1): p. 47-58. [46]Takeyama, H., H. Sekiguchi, and K. Takada, One approach for optimizing control in turning. J. of JSPE, 1970. 36(5): p. 311-317. [47]Takayama, H., H. Sekiguchi, and H. Takada, One solution for chip hazard in turning-study on automatic programming for numerically controlled machines (first report), J. JSPE, 1970. 36(2): p. 150-156.
|