(3.235.108.188) 您好!臺灣時間:2021/03/07 19:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:儲誠佳
研究生(外文):Cheng-Chia Chu
論文名稱:平面磨床超音波主軸模組之設計與開發
論文名稱(外文):Design and Development of the Ultrasonic Spindle Module for Surface Grinding Machines
指導教授:廖運炫
指導教授(外文):Yunn-Shiuan Liao
口試日期:2017-07-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:92
中文關鍵詞:超音波主軸平面磨削不鏽鋼碳化鎢
外文關鍵詞:ultrasonic spindlesurface grindingstainless steeltungsten carbide
相關次數:
  • 被引用被引用:1
  • 點閱點閱:212
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
  超音波振動輔助加工已由前人各項研究中證實對於磨削加工有顯著的效果,但至今未能將此技術應用於一般磨削機台上。本研究採用自行設計的主軸元件及金屬砂輪,搭配FEM模擬進行應力分析及最佳化,並改裝市面現有磨床,開發出「超音波主軸模組」,使超音波能呈現輻射狀直接傳遞至砂輪外部,而不須透過外加式振動裝置的輔助。在此設計下,砂輪外徑仍有180mm,不僅能維持高的線速度,且在任何角度下進行加工皆能使超音波振動垂直加工材料表面,使超音波達到最佳的效能,操作上也更為簡便。
  實驗結果顯示,超音波主軸模組應用於磨削硬脆材料如鎢鋼,在切深40m以上仍有優異的效果,可降低平均磨削力,且減少砂輪磨耗達20%,同時大幅減少硬脆材料在脆性破壞機制下產生的表面缺陷,使表粗度明顯改善;對於延性材料如不鏽鋼的磨削,主軸超音波亦可減緩磨削過程中的砂輪填塞,延長修整週期達2.4倍,除了可維持穩定的加工品質外,亦大幅降低加工成本。
  本文從設計、模擬到元件的實際製作組裝,將超音波技術與現今市面磨床機台加以整合,成功開發出實用且具商業價值的「超音波主軸模組」。此模組也能套用至相近尺寸之平面磨床機台,使超音波磨削不只是作為研究之用,在磨削的應用面是一大突破。
It has been proven by past research that ultrasonic vibration is very effective to grinding process, but people have not applied the technique to surface grinding machines. In this research, we designed and developed the "ultrasonic spindle module" by doing FEM simulations and modifying a surface grinding machine on the market. The unique design let ultrasonics transmit from spindle to the outside of grinding wheels directly, without assisting of external devices. By this design, high grinding speed is feasible by using grinding wheels of 180mm diameter. In the grinding processing, direction of ultrasonic vibration can always be perpendicular to workpiece surface, the feature makes "ultrasonic spindle module" more effective and maneuverable.
The experiment result shows that the module which used on grinding process of brittle materials, like tungsten carbide, can be still effective when DOC>40m. The average grinding force reduced, wear reduced by 20%, surface roughness(Sa) reduced, and surface defects which made by brittle failures also reduced substantially. When the module used on grinding process of ductile materials, like SUS304, chip adhesion can be reduced substantially, and the dressing cycle of grinding wheels can be extended 2.4 times. It shows that the application of the "ultrasonic spindle module" can not only promote surface qualities, but also reduce processing costs.
This paper combined the techniques of ultrasonic vibration and grinding machines, integrated from design to production, and developed a functional "ultrasonic spindle module" successfully. This module is not just for research purposes, it can be apply to similar grinding machines, and the high application value also breaks new ground in the product design domain.
誌謝................................................................................................................................I
摘要...............................................................................................................................II
ABSTRACT................................................................................................................III
目錄.............................................................................................................................IV
圖目錄.........................................................................................................................VI
表目錄.........................................................................................................................XI
第一章 緒論.................................................................................................................1
1.1 研究背景與動機....................................................................................................1
1.2 文獻回顧................................................................................................................1
1.3 研究目的與方法....................................................................................................9
1.4 本文架構................................................................................................................9
第二章 相關理論........................................................................................................11
2.1 磨削基本原理.......................................................................................................11
2.2 磨削熱分析...........................................................................................................18
2.3 超音波振動輔助磨削機制...................................................................................23
2.4 表面粗糙度...........................................................................................................28
第三章 超音波模組設計與製作................................................................................32
3.1 主軸與砂輪設計...................................................................................................32
3.2 FEM模擬與最佳化..............................................................................................39
3.3 實際製作與測試...................................................................................................44
第四章 實驗設備及架構............................................................................................46
4.1 實驗設備與材料...................................................................................................46
4.2 實驗架構...............................................................................................................56
4.3 實驗量測方法.......................................................................................................62
第五章 實驗結果與討論............................................................................................63
5.1 漸進切深實驗.......................................................................................................63
5.2 連續磨削實驗.......................................................................................................77
第六章 結論與未來展望............................................................................................88
6.1 結論.......................................................................................................................88
6.2 未來展望...............................................................................................................88
參考文獻......................................................................................................................89
附錄..............................................................................................................................94
[1] 羅勝益,鈦合金與不銹鋼磨削加工特性之探討,淡江大學機械工程研究所碩士論文,1987。
[2] S. Yossifon and C. Rubenstein, "The Grinding of Workpieces Exhibiting High Adhesion. I.-- Mechanisms," J. Eng. Ind.(Trans. ASME), vol. 103, pp. 144-155, 1981.
[3] A. P. Nagaraj and A. Chattopadhyay, "On some aspects of wheel loading," Wear, vol. 135, pp. 41-52, 1989.
[4] 大森整,ELID鏡面研削技術,全華科技圖書股份有限公司,2006。
[5] P. Zhang and M. H. Miller, "Grinding wheel loading with and without vibration assistance," in Proc. of the ASPE Annual Meeting, 2003, pp. 529-533.
[6] E. Pecherer and S. Malkin, "Grinding of steels with cubic boron nitride(CBN)," CIRP Annals-Manufacturing Technology, vol.33, pp.211-216, 1984.
[7] I. Inasaki, "Grinding of hard and brittle materials,"CIRP Annals-Manufacturing Technology, vol.36, pp. 3214-3224, 1998
[8] Z. Zhong, "Ductile or partial ductile mode machining of brittle materials," The International Journal of Advanced Manufacturing Technology, vol.21, pp.579-585, 2003.
[9] T. Bifano and T. Dow, "Ductile-regime grinding: a new technology for machining brittle materials," Journal of Engineering for Industry (Transactions of the ASME), vol.113, pp.184-189, 1991.
[10] 隈部淳一郎,精密加工振動切削基礎與應用,北京機械工業出版社,1985。
[11] L. Balamuth, "Ultrasonic assistance to conventional metal removal," Ultrasonics, vol. 4, pp. 125-130, 1966.
[12] Taghi Tawakoli, Bahman Azarhoushang, “Influence of ultrasonic vibrations on dry grinding of soft steel,” International Journal of Machine Tools and Manufacture, vol. 48, Issue 14, November 2008, Pages 1585-1591.
[13] M. G. Nik, M. R. Movahhedy, and J. Akbari, "Ultrasonic-Assisted Grinding of Ti6Al4V Alloy," Procedia CIRP, vol. 1, pp. 353-358, 2012.
[14] 蕭凱駿,超音波振動輔助對磨削切屑黏附之影響,國立台灣大學碩士論文,2013。
[15] G. Spur and S.-E. Holl, "Ultrasonic assisted grinding of ceramics," Journal of Materials Processing Technology, vol. 62, pp. 287-293, 1996.
[16] Javad Akbari, Hassan Borzoie, and Mohammad Hossein Mamduhi, "Study on Ultrasonic Vibration Effects on Grinding Process of Alumina Ceramic (Al2O3),"International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, vol:2, No:5, 2008.
[17] 黃郁珊,超聲振動輔助磨削硬脆材料之研究,國立清華大學碩士論文,2011。
[18] J.Y. Shen, J.Q. Wang, B. Jiang, X.P. Xu, "Study on wear of diamond wheel in ultrasonic vibration-assisted grinding ceramic,"Wear, pp.788–793, 2015.
[19] Z. Liang, et al., "A new two-dimensional ultrasonic assisted grinding (2D-UAG) method and its fundamental performance in monocrystal silicon machining,"International Journal of Machine Tools and Manufacture, vol.50, pp.728-736, 2010.
[20] W. Lortz, "A model of the cutting mechanism in grinding," Wear, vol. 53, pp. 115-128, 1979.
[21] G. Bellows, "Low Stress Grinding. For Quality Production," Machinability Data Center, 1978.
[22] S. Malkin and N. H. Cook, "The Wear of Grinding Wheels," Journal of Engineering for Industry, vol. 93, pp. 1120-1128, 1971.
[23] R. Snoeys, J. Peters, and A. Decneut, "The significance of chip thickness in grinding," Annals of the CIRP, vol. 23, pp. 227-237, 1974.
[24] G. Werner, "Influence of work material on grinding forces," Annals of the CIRP, vol. 27, pp. 243-248, 1978.
[25] L. Lichun, F. Jizai, and J. Peklenik, "A study of grinding force mathematical model," CIRP Annals-Manufacturing Technology, vol. 29, pp. 245-249, 1980.
[26] 中國砂輪概要,中國砂輪企業股份有限公司。
[27] 黃淸忠,氧化鋁與氮化硼砂輪磨削工件表面整合之比較,國立台灣大學碩士論文,1990。
[28] J. W. Sutherland, "An Investigation into the Effect of tool and Cut Geometry on Cutting Force System Precision Models," NAMRC, p. 264, 1984.
[29] H. Tsuwa, "An investigation of grinding wheel cutting edges," Journal of Engineering for Industry, vol. 86, pp. 371-381, 1964.
[30] S. Malkin and C. Guo, Grinding Technology: The Way Things Can Work: Theory and Application of Machining with Abrasives: Industrial Press Inc., 2008.
[31] M. Hillier, "On a three-dimensional model of the surface grinding process," International Journal of Machine Tool Design and Research, vol. 6, pp. 109-113, 1966.
[32] K. Kumar, M. Cozminca, Y. Tanaka, and M. Shaw, "A new method of studying the performance of grinding wheels," J. Eng. Ind., vol. 102, pp. 80-84, 1980.
[33] S. Malkin, "Grinding Technology—Theory and Applications of Machining with Abrasives," Dearborn, Michigan: Society of manufacturing engineers, 1989.
[34] M. C. Shaw, Principles of abrasive processing: Clarendon Press Oxford, 1996.
[35] Jaeger, J.C., "Moving Sources of Heat and the Temperature at Sliding Contact,"Proc. Roy. Soc. of New South Wales, Vol.76, 1942, pp. 203-224.
[36] Takazawa, K., "Effects of Grinding Variables on the Surface Structure of Hardened Steel,"Bull. Japan Soc. of Prec. Engg., Vol.2, April 1966.
[37] Outwater, J. O., and Shaw, M. C., "Surface Temperature in Grinding," Transactionsof the ASME, Vol.74, pp.73-86, 1952.
[38] Sato. K.,"Grinding Temperature," Bull. Japan Society of Grinding Engineers, Vol.1,pp..21-33, 1961.
[39] Kannappan, S. and Malkin, S., "Effects of Size and Operating Parametersmon the Mechanics of Grinding," ASME Journal of Engineering for Industry, Vol.94, pp.833-842, 1972.
[40] Malkin, S. and Anderson, R. B., "Thermal Aspects of Grinding: Part 1 Energy Partition," ASME Journal of Engineering for Industry. Vol.96, pp.1177-1183, 1974.
[41] Lee, D. G., Zerkle, R. D. and DesRuisseaux, N.R.,"An Experimental Study of the Thermal Aspect of Cylindrical Plunge Grinding," Trans. ASME, Journal of Engineering for Industry, Vol.94, pp. 1206, 1972.
[42] Shaw, Milton C., “A Production Engineering Approach to Grinding Temperatures,” Journal of Mater. Process. Technol., Vol.44, pp.159-169, 1994.
[43] G. Bellows, "Low Stress Grinding. For Quality Production," Machinability Data Center, 1978.
[44] Malkin, S., "Thermal Aspects of Grinding: Part 2 Surface Temperatures and Workpiece Burn," ASME Journal of Engineeringfor Industry. Vol.96, pp.1184-1191, 1974.
[45] 郭文良,平面磨削之溫度與熱變形研究,國立成功大學機械工程學系博士論文,2004。
[46] 吳朗,電子陶瓷-壓電,全欣資訊圖書股份有限公司,1994。
[47] T.L. Szabo and P. A. Lewin, "Piezoelectric Materials for Imaging,"Journal of Ultrasonic in Medicine, vol.26, pp.283-292, 2007.
[48] E. Uhlmann and G. Spur, "Surface formation in creep feed grinding of advanced ceramicswith and without ultrasonic assistance," CIRP Annals-Manufacturing Technology, vol. 47, pp. 249-252, 1998.
[49] B. Denkena, T. Friemuth, M. Reichstein, H.K. Tӧnshoff, "Potentials of Different Process Kinematics in Micro Grinding," CIRP Annals-Manufacturing technology,vol.52, Issue 1, pp.463-466, 2003.
[50] 李尚軒,超聲輔助磨削之切屑構型分析,國立清華大學碩士論文,2003。
[51] B. E. Noltingk,E. A. Nappiras, "Cavitation Produced by Ultraconic,"IPO Science, 1950.
[52] 范光照,精密量測,高立圖書有限公司,2001。
[53] X. Jiang, "The Evolution of Surfaces and their Measurement,"The 9th International Symposium on Measurement Techniligy and Intelligent Instruments, pp.54-60, 2009.
[54] 賴耿陽,超音波工學理論實務,復漢出版社有限公司,2001。
[55] ESA (IMPRESS Education), http://www.spaceflight.esa.int
[56] 機械製造技術,趙豔紅,化學工業出版社,2013。
[57] 彭英翰,超音波輔助鑽孔碳化矽之研究,國立台灣大學碩士論文,2014。
[58] ARC ABRASIVES INC, http://s177546276.onlinehome.us/Abrasives/Coated.html
[59] M. C. Shaw, Metal cutting principles. Oxford Oxfordshire, New York: Clarendon Press: Oxford University Press, 1984.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔