跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/15 01:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曹揚
研究生(外文):YANG TSAO
論文名稱:考慮諧波效應之電動車感應馬達最佳設計流程
論文名稱(外文):Optimal Design of Induction Motors with Harmonic Effects for Electric vehicles
指導教授:陽毅平陽毅平引用關係
指導教授(外文):Yee-Ping Yang
口試日期:2017-07-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:359
中文關鍵詞:諧波分析最佳化設計振動噪音寄生力矩雜散損繞線
外文關鍵詞:harmonic analysisoptimal designvibrationnoiseparasitic torqueadditional stray losseswinding.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:499
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
隨著氣候變遷加劇,對於溫室氣體排放之限制已成為一個主要的議題。為了減輕溫室效應之影響,各國不斷提出更為嚴格之排放標準。例如歐盟已於2014年進入第六期(Euro Ⅵ)的排放檢驗標準,進一步限制氮氧化合物之排放。而台灣也參考了歐盟之排放標準,並將於2019年實施新的排放標準。隨著這些標準的提升,內燃機引擎汽車(internal combustion engine vehicle, ICEV)已很難跟上法規的變化,而將被排除在市場之外。例如挪威將於2025年禁售汽油車,而德國也將在2030年跟進。因此,低排放量的油電混合動力車(hybrid electrical vehicle, HEV)以及無排放量之純電動車(electrical vehicle, EV)便成為了各大車廠生產與研究之目標,而扮演其動力來源之電動車馬達也受到相當程度之關注。在眾多種類之馬達之中,鼠籠式感應馬達由於其製造成本低廉、強靭、控制性等優點而在中高功率之電動車應用上得到較大之青睞。然而,由於鼠籠式感應馬達其複雜之諧波交互作用,容易產生寄生力矩、振動、噪音、額外雜散損等不良效應。因此,能夠設計出一個低諧波效應之電動車馬達是相當重要的
本論文以業界常用的設計法切入,提供定子之繞線分析與設計,並推導了槽匹配之公式。由本論文之討論可以得知,降低諧波效應之關鍵在於適當之氣隙磁通密度值與定轉子槽數。並且本論文提出了一套最佳化之流程,應用在2.2kw之四極馬達上。經由最佳化設計,此顆馬達之效率、功因以及力矩漣波皆有相當程度之提升。
With increasing climate change, greenhouse gas emissions has become a serious issue. To reduce these emissions, governments continue providing new standards stricter than they were. For example, Euro 6 standard has been implemented in EU and EEA member states in 2014, having a lower level of nitrogen oxide emissions in diesel cars. Taiwan will also implement new emission standard, planned to follow the Euro 6 standard, in 2019. With a lower emission level, internal combustion engine vehicles (ICEV) are getting harder to meet these standards, and will be eliminated from the new car market. For instance, petrol or diesel cars will not be sold in Norway by 2025, and Germany will also calls for a ban on combustion engine by 2030. Therefore, Cars with low exhaust emissions, hybrid electric vehicles (HEV), or zero exhaust emissions, electric vehicles (EV), have become the subject of research and production made by car makers. Electric motors, the main component in electric vehicle transmission system, are also getting more and more concerned. Beyond numerous kind of electric motors, squirrel cage induction motor might be the best candidate for electric vehicle because of its inexpensive cost, robustness and controllability. However, due to its complex interactions between stator and rotor harmonics, squirrel cage induction motors often suffer from parasitic torques, vibrations, noises and additional stray losses. Therefore, designing a squirrel cage motor with low harmonic effects is quite important for electric vehicle.
This thesis starts with a brief design procedure used in industrial, providing an interpretation of its physical meaning. This thesis also presents a novel analysis and design procedure for winding, allowing designers to determine winding factor of any order harmonic for arbitrary winding. On the other hand, this thesis provides derivations of slots combination preventing parasitic torques, noises and vibrations, additional stray losses. With these derivations, we realize that air gap flux density and the number of slots affect harmonic effect the most. Lastly, this thesis presents an innovative optimal design procedure for electric vehicle induction motor and apply this procedure to a2.2kw, four pole induction motor. As a result, efficiency, power factor and torque ripple are all significantly improved.
第一章 緒論 1
1.1 電動車之優勢 1
1.1.1 油價 2
1.1.2 排放 3
1.1.3 油耗 7
1.2 電動巴士之現況 8
1.3 馬達種類 11
1.4 研究目的與方法 16
1.5 文獻回顧 18
1.5.1 設計法 18
1.5.2 繞線 20
1.5.3 槽匹配 21
1.5.4 寄生力矩 22
1.5.5 振動、噪音 24
1.5.6 額外損失 25
1.5.7 不平橫磁拉力 26
1.6 論文架構 27
第二章 感應馬達基礎設計流程 31
2.1 主要設計流程介紹 31
2.2 重要方程式理論推導 32
2.2.1 選擇框號以及馬達尺寸 32
2.2.2 定轉子鐵心主要尺寸 33
2.2.3 定子與轉子之槽數選擇 39
2.2.4 電負載與導體數計算 41
2.2.5 相電流與定子槽尺寸計算 54
2.2.6 轉子槽尺寸計算 63
2.2.7 磁動勢與激磁電流 69
2.2.8 電阻與電抗 77
2.2.9 馬達特性計算 106
2.3 重要參數係數來源 122
第三章 感應馬達繞線分析與設計 127
3.1 基本觀念與名詞簡介 127
3.1.1 旋轉磁場 128
3.1.2 相數 130
3.1.3 相帶 (phase belt) 130
3.1.4 相帶數 132
3.1.5 數學模型 133
3.1.6 諧波分析 144
3.2 繞線設計 145
3.2.1 單層入線 147
3.2.2 雙層入線 150
3.2.3 產生B、C相線圈與入槽之限制 150
3.3 連接線圈 156
第四章 繞線分析之驗証與繞線表 159
4.1 快速傅利葉轉換 159
4.2 驗證諧波分析與繞線表準確性 161
4.3 繞線表 167
4.3.1 相帶數2,極數4,單層入線 173
4.3.2 相帶數3,極數4,單層入線 174
4.3.3 相帶數4,極數4,單層入線 175
4.3.4 相帶數2,極數4,雙層入線 176
4.3.5 相帶數3,極數4,雙層入線 178
4.3.6 相帶數4,極數4,雙層入線 180
4.4 討論 183
4.4.1 假設合理性 183
4.4.2 數據正確性 184
第五章 1D分析流程 187
5.1 轉子側感應電流與其磁動勢 188
5.2 槽開口對有效氣隙之影響 198
5.2.1 等效氣隙與卡特係數 199
5.2.2 兩側槽開口之有效氣隙模型 200
5.3 利用能量法求得力矩 207
5.3.1 能量與輔能 208
5.3.2 利用輔能求感應馬達之力矩 212
第六章 諧波對感應馬達之影響 217
6.1 可能出現之諧波 218
6.1.1 步階諧波 219
6.1.2 飽和造成的諧波 222
6.1.3 轉子偏心造成的諧波 223
6.2 寄生力矩 226
6.2.1 寄生力矩之來源 227
6-2-1非同步寄生力矩 233
6.2.2 同步寄生力矩 237
6.2.3 寄生力矩的實驗數據 244
6.2.4 定子為24槽 244
6.2.5 定子為36槽 247
6.2.6 定子為48槽 247
6.3 電磁噪音 248
6.3.1 步階諧波之影響 253
6.3.2 考慮定轉子槽開口之影響 254
6.3.3 飽和之影響 256
6.3.4 轉子偏心之影響 256
6.4 抑制方法 257
6.4.1 增加氣隙 257
6.4.2 增加轉子電阻 258
6.4.3 改變定子繞線 258
6.4.4 減小槽開口 259
6.4.5 採用斜槽 260
6.4.6 適當的槽匹配 260
6.5 額外損失與熱 261
6.5.1 表面損 262
6.5.2 脈動損 262
6.5.3 鼠籠轉子損失 263
6.5.4 橫向電流損失 263
6.6 降低雜散損 264
第七章 最佳化設計流程 269
7.1 設計參數 269
7.1.1 改變轉子槽數 274
7.1.2 改變氣隙大小之影響 298
7.1.3 改變轉子槽深之影響 301
7.1.4 改變積厚之影響 303
7.1.5 改變轉子槽開口之影響 304
7.1.6 改變轉子靴部尺寸之影響 305
7.2 最佳化設計 315
7.2.1 最佳化流程 315
7.2.2 利用RMxprt進行靈敏度分析 319
7.2.3 利用RMxprt進行最佳化 321
7.2.4 最佳化設計 321
7.3 以有限元素驗証最佳化之結果 344
第八章 結論與未來展望 349
8.1 本論文之貢獻 350
8.2 未來展望 351
參考文獻 353
[1] Patterson, R. (2015). The next decade will decide peak oil outcome. Retrieved January 5, 2015, from http://oilprice.com/Energy/Crude-Oil/The-Next-Decade-Will-Decide-Peak-Oil-Outcome.html
[2] 經濟部能源局(2015)。2015年中華民國國家溫室氣體清冊報告。第三章能源部門。取自:http://gimi.tmu.edu.tw/files/archive/33_d83cf40f.pdf
[3] International Council on Clean Transportation. (2014, January), EU CO_2 Emission Standards for Passenger Cars and Light-Commercial Vehicles. From http://www.theicct.org/sites/default/files/publications/ICCTupdate_EU-95gram_jan2014.pdf
[4] Liebreich, M. (2016). Bloomberg new energy finance summit. Retrieved April 5, 2016, from http://www.bbhub.io/bnef/sites/4/2016/04/BNEF-Summit-Keynote-2016.pdf
[5] Zeraoulia, M., EL Hachemi Benbouzid, and Diallo, D., “Electric Motor Drive Selection Issues for HEV Propulsion Systems: A Comparative Study”, IEEE Transactions on Vehicular Technology, vol.55, no. 6, pp. 1756-1764, November, 2006.
[6] Xu, W., Zhu, J., Guo, Y., Wang, S., Wang, Y., and Shi Z., “Survey on Electrical Machines in Electrical Vehicles”, IEEE International Conference on Applied Superconductivity and Electromagnetic Devices, September 25-27, 2009.
[7] 堀洋一,正木良三,寺谷達夫,“モータ実用ポケットブック”,日刊工業新聞社, 2003.
[8] Lim, S., Nam, K., “Loss-minimising control scheme for induction motors”, IEE Proc.-Electr. Power Appl., vol. 151, No. 4, July 2004.
[9] Araújo, R., E., “Induction Motors – Modelling and Control”, Rijeka, Croatia: Intek, 2012.
[10] De La Tour, H., B., “the Induction Motor : Its Theory and Design”, Mcgraw publishing company: New York, 1903.
[11] Appelbaum, J., Khan, I., A., and Fuchs, E., F., “Optimization of There-phase Induction Motor Design Part I: Formulation of the Optimization Technique”, IEEE Transactions on Energy Conversion, Vol. EC-2, No. 3 September 1987.
[12] Appelbaum, J., Khan, I., A., and Fuchs, E., F., “Optimization of There-phase Induction Motor Design Part II: The Efficiency and Cost of an Optimal Design”, IEEE Transactions on Energy Conversion, Vol. EC-2, No. 3 September 1987.
[13] Idir, K., and Chang, L., “Induction Motor Design Using Neural Network”, Canadian Conference on Electrical ans Computer Engineering, vol. 1, pp. 277-279, 1995.
[14] Boglietti, A., Miotto, A., and Vaschetto, S., “Induction Motor Design Methodology based on Rotor Diameter Progressive Growth”, IEEE Energy Conversion Congress and Exposition, pp. 3104-3111, 2011.
[15] 糸見和信, 東芝小形モータ研究会, “実用モータ設計マニュアル”, 東京都, 総合電子リサーチ(総合電子出版社), 1992.
[16] 許溢适,”實用電動機設計手冊”, 台北市, 文笙書局,1996.
[17] Cistelecan, M., V., and Demeter, E., “Induction Motors With low Copper Windings and Improved Performance”, Electrotechnical Conference, 1996. MELECON ’96., 8th Mediterranean, vol. 3, pp. 1183-1186, 1996.
[18] Cistelecan, M., V., and Demeter, E., “A New Approach of the Three Phase Mono-axial Unconventional Windings for AC Machines”, Electric Machines and Drives, 1999. International Conference IEMD ’99, pp. 323-325, 1999.
[19] Cipin, R., and Patocka, M., “Electromagnetic Design of Irregular Three Phase Windings”, 2013 15th European Conference on Power Electronics and Applications (EPE), pp. 1-10, 2013.
[20] Di Tommaso, A., O., Genduso, F., and Meceli, R., “A Software for the Evalustion of Winding Factor Harmonic Distribution in High Efficiency Electrical Motors and Generators”, 2013 8th International Conference and Exhibition on Ecological Vehicles and Renewable Energies (EVER), pp. 1-6, 2013
[21] Kocabas, D., A., “Space Harmonic Effect Comparison between a Standard Induction Motor and a Motor with a Novel Winding Arrangement”, IEEE International Electric Machines and Drives Conference (IEMDC), pp. 65-69, 2009.
[22] Kocabas, D., A., “Novel Winding and Core Design for Maximum Reduction of Harmonic Magnetomotive Force in AC Motor”, IEEE Transactions on Magnetics, Vol. 45, pp. 735-746, Feb. 2009.
[23] Ye, L., and Xu, L., “Analysis of a Novel Stator Winding Structure Minimizing Harmonic Current and Torque Ripple for Dual Six-Step Converter-Fed High Power AC Machines”, Conference Record of the 1993 IEEE Industry Application Society Annual Meeting, vol. 1, pp. 197-202, Oct. 1993.
[24] Kron, G., “Induction Motor Slot Combinations Rules to Predetermine Crawling, Vibration, Noise and Hooks in the Speed-Torque Curve”, Transactions of the American Institute of Electrical Engineers, vol.50, pp. 757-767, June, 1931.
[25] Kron, G., “Slot Combinations of Induction Motors”, Electrical Engineering, vol. 50, pp. 937-939, Dec. 1931.
[26] Heller, B., and Hamata, V., “Harmonic Field Effects in Induction Machines”, Elsevier Scientific publishing company: Amsterdam, New York, 1977.
[27] Hirotsuka, I., Tsuboi, K., and Ishibashi, F., “Effect of Slot-Combination on Electromagnetic Vibration of Squirrel-Cage Induction Motor under Loaded Condition”, Proceedings of the Power Conversion Conference – Nagaoka 1997, vo..2, pp. 843-848, Aug 1997.
[28] Kobayashi, T., Tajima, F., Ito, M., and Shibukawa, S., “Effects of Slot Combination on Acoustic Noise from Induction Motors”, IEEE Transactions on Magnetics, vol.33, pp. 2101-2104, Mar. 1997.
[29] Monjo, L., Corcoles, F., and Pedra, J., “Parameter Estimation of Squirrel-Cage Motors with Parasitic Torques in the Torque-Slip Curve”, IET Electric Power Applications, vol. 9, pp. 377-387, April 2015.
[30] Cha, H., R., Yun, C., H., Jung, T., U., and Kim, H., M., “A Control of the MMF Space Harmonic Parasitic Torques in the Concentrated Winding AC Machine Using Skew Angle Optimization”, 32nd Annual Conference on IEEE Industrial Electronics IECON 2006, pp. 1018-1022, Nov. 2006.
[31] Jimoh, A., A., and Findlay R., D., “Parasitic Torques in Saturated Induction Motors”, IEEE Transactions on Energy Conversion, Vol. 3, pp. 157-163, Mar. 1988.
[32] Golebiowski, L., and Mazur, D., “The Effect of Strong Parasitic Synchronous and Asynchronous Torques in Induction Machine with Rotor Eccentricity”, MELECON 2000. 10th Mediterranean Electrotechnical Conference, 2000, Vol. 3, pp. 982-985, May 2000.
[33] De Buck, F., G. G., “Losses and Parasitic Torques in Electric Motors Subjected to PWM Waveforms”, IEEE Transactions on Industry Applications, Vol. IA-15, pp. 47-53, Jan. 1979.
[34] Chapman, F., T., “The Production of Noise and Vibration by Certain Squirrel-Cage Induction motors”, Journal of the Institution of Electrical Engineers, Vol. 61, pp. 39-48, Dec. 1922.
[35] Timar, P., L., Faxekas, A., Kidd, J., Miklos, A., and Yang, S., J., “Noise and Vibration of Electrical Machine”, Amsterdam-Oxford-New York-Tokyo, Elsevier, 1989.
[36] Yang, S., J.(着), 斉藤 文利(翻訳), ”ロー・ノイズ・モータ―:電気機械の騒音の測定と抑制法”, 東京都, 総合電子出版社, 1983.
[37] Verma, S., P., and Balan, A., “Determination of Radial-Forces in Relation to Noise and Vibration Problems of Squirrel-Cage Induction Motors”, IEEE Transactions on Energy Conversion, Vol. 9, pp. 404-412, Jun. 1994.
[38] Kim, D., J., Jung, D., W., Hong, J., P., Kim, K., J., and Park, C., J., “A Study on the Design Process of Noise Reduction in Induction Motors”, IEEE Transactions on Magnetics, Vol. 48, pp. 4638-4641, Nov. 2012.
[39] Munoz R., A., and Nahmias C., G., “Mechanical Vibration of Three-Phase Induction Motors Fed by Nonsinusoidal Currents”, 3rd International Power Electronics Congress, 1994. Technical Proceedings, pp. 166-172, Aug. 1994.
[40] Hirotsuka, I., Tsuboi, K., and Kawakami, M., “Influence of the Phase Angle of Time-Harmonic Voltage and Load Condition on the Electromagnetic Vibration of a Squirrel-Cage Induction Motor”, International Conference on Electrical Machines and Systems, 2007, ICEMS, pp. 1088-1093, Oct. 2007.
[41] Schwarz, K., K., “Survey of Basic Stray Losses in Squirrel-Cage Induction Motors”, Proceedings of the Institution of Electrical Engineers, Vol. 111, Issue: 9, pp. 1565-1574, Sep. 1964.
[42] Schwarz, K., K., “Stray Losses in Squirrel-Cage Induction Motors”, Electronics and Power, Vol. 10, Issue: 9, pp.307-308, Sep. 1964.
[43] Nakahara, A., Kikuchi, S., Nishihama, K., Miyoshi, T., and Kaihatsu, K., “Interbar Current Losses in Cage Induction Motors Due to Harmonic Flux”, 2013 International Electric Machines & Drive Conference (IEMDC), pp. 1364-1368, May 2013.
[44] Boglietti, A., Cavagnino, A., Ferraris, L., and Lazzari, M., “Impact of the Supply Voltage on the Stray Load Losses in Induction Motors”, 2009 IEEE Energy Conversion Congress and Exposition, pp. 1267-1272, Sep. 2009.
[45] Yamazaki, K., Suzuki, A., Ohto, M., Takakura, T., and Nakagawa, S., “A Novel Equivalent Circuit Involving Stray Load Loss and Harmonic Torques for High Speed Induction Motors Driven by Inverters”, 2011 IEEE International Electric Machines & Drives Conference (IEMDC), pp. 902-907, May 2011.
[46] Möller, H., “Über die Drehmonente beim Anlauf von Drehstrommotoren mit Käfigankern”, A. f. E., 1930, pp. 401-424.
[47] Wu, Y., Feng, W., and Li, Y., “Analysis of Unbalance Magnetic Pull in Eccentric Turbo-Generator under Multiple Loading Conditions”, 2014 International Conference on Power System Technology (POWERCON), pp. 1379-1386, Oct. 2014.
[48] Frauman, P., Burakov, A., and Arkkio, A., “Effects of the Slot Harmonics on the Unbalanced Magnetic Pull in an Induction Motor with an Eccentirc Rotor”, IEEE Transactions on Magnetics, Vol. 43, Issue: 8, pp. 3441-3444, Aug. 2007.
[49] Di, C., Bao, X., Wang, H., Lv, Q., and He, Y., “Modeling and Analysis of Unbalanced Magnetic Pull in Cage Induction Motors with Curved Dynamic Eccentricity”, IEEE Transactions on Magnetics, Vol. 51, Issue: 8, Article#. 8106507, Mar. 2015.
[50] Ostovic, V., “Computer-aided Analysis of Electric Machines: A Mathematica approach”, Prentice Hall: New York, London, Toronto, Sydney, Tokyo, Singapore, 1994.
[51] Fitzgerald, A., E., Kingsley, C., Jr., and Umans, S., D., “Electric Machinery (Sixth Edition)”, McGraw-Hill: New York, 2003.
[52] Bose, B., K., “Modern Power Electronics and AC Drives”, Prentice Hall PTR: Upper Saddle River, NJ 07458, 2002.
[53] Boldea, I., and Nasar, S., A., “The Induction Machine Handbook”, CRC Press: Boca Raton, London, New York, Washington, D.C., 2010.
[54] Boldea, I., and Nasar, S., A., “Linear Electric Actuators and Generators”, Cambridge University Press: Cambridge, 1997.
[55] 石崎 彰, “誘導機設計入門”, 電気書院, 京都, 1957.
[56] Schuisky, W., “Induktionsmaschinen”, Springer-Verlag, Wien, 1957.
[57] Kuhlmann, J., “Design of Electrical Apparatus, 3rd ed.”, John Wiley & Sons, New York, 1954.
[58] Liwschitz, M.(著), 程福秀(譯),”電機設計與計算”,五洲出版社,1967.
[59] 簡明扶講義,2012.
[60] Hanselman, D., “Brushless Permanent Magnet Motor Design (2nd edition)”, The Writers’ collective, Cranton,Rhode Island, 2003.
[61] 高橋 幸人, “電気機器設計 Ⅰ、Ⅱ”,共立出仮株式会社, 東京, 1969.
[62] Puchstein, A. F., “Calculation ofSlot Constants”, Transactions of the American Institute of Electrical Engineers, Vol. 66, Issue: 1, pp. 1315 - 1323, Jan. 1947.
[63] Kilgore, A. L., “Calculation of Synchronous Machine Constants – Reactances and Time constants Affecting Transient Characteristics”, Transactions of the American Institute of Electrical Engineers, Vol. 50, Issue: 4, pp. 1201 - 1213, Dec. 1931.
[64] Alger, P. L., “The Calculation of the Armature Reactance of Synchronous Machines”, Transactions of the American Institute of Electrical Engineers, Vol. 47, Issue: 2, pp. 493 - 512,April 1928.
[65] Alger, P. L., “The Nature of Polyphase Induction Machines”, John Wiley &sons, 1951.
[66] Adams, C. A., “The Design of Induction Motors – With Special Reference to Magnetic Leakage”, A. I. E. E. Trans., Vol 24, pp. 649-84: Discussion, pp. 685-87, 1905.
[67] Cistelecan, M., V., Demeter, E,” A Close Approach of the Fractional Multilayer Three-phase A.C. Windings”, Rec. of Electromotion – 1999, Patros, Greece, Vol.1 pp.51-54, May 1999.
[68] Cistelecan, M. V., Demeter, E., “New 3 Phase A.C. Windings with Low Spatial Harmonic Content”, Rec. of Electromotion Symposuim – 1997, Cluj-Napoca, Romania, pp.98-100.
[69] 賴冠宇、陽毅平(民104)。具脈寬外型磁鐵的少稀土永磁同步馬達。機械工業雜誌。頁35-54。
[70] Hiramatsu, D., Sutrisna, K. F., Tokumasu, T., Ishizuka, H., Okubo, M., Tsujikawa, K., Ueda, T., Hachiya, H., Aso, T., Otaka, T., ”Novel Interspersed Windings to Reduce Space Flux Harmonics Caused by Fractional-Slot of Synchronous Machine”, Electric Machines & Drives Conference (IEMDC), 2013 IEEE international, pp. 634-639, 12-15 May 2013.
[71] Tsujikawa, K., Tokumasu, T., Kakiuchi, M., Hiramatsu, D., Fujita, M., Ueda, T., Ikeda, K., Ichimonji, M., Otaka, T., “Special Winding to Reduce Space Flux Harmonics Caused by Fractional-Slot”, Electrical Machines and Systems (ICEMS), 2012 15th International Conference on, 21-24 Oct 2012.
[72] Lipo, T., A., “Introduction to AC Machine Design (Third edition)”, Wisconsin Power Electronics Research Center, University of Wisconsin, 2011.
[73] Cistelecan, M. V., Ferreira, F. J.T.E., Popescu, M., “Three phase tooth-concentrated interspersed winding with low space harmonic content”, Electrical Machines (ICEM), 2010 XIX international Conference on, 6-8 Sept. 2010.
[74] Cistelecan, M. V., Ferreira, F. J.T.E., Popescu, M., “Three phase tooth-concentrated multiple-layer fractional windings with low space harmonic content”, Energy Conversion Congress and Exposition (ECCE), 2010 IEEE, 12-16 Sept. 2010.
[75] Dudley, A, M., “Connecting Induction Motors : The Practical Application of a designing Engineer’s Experience to the Problems of Operating Engineers, Armature Winders and Repair Men. Also the Presentation to Students of Practical Questions Arising in Winding and Connecting Alternating Current Motors. ( Third Edition, Fifteenth Impression )”, McGrawHilll Book Company, Inc., New York and London, 1936.
[76] Danielson, G. C., and Lanczos, C. ,“Some improvements in practical Fourier analysis and their application to X-ray scattering from liquids,” J. Franklin Inst., vol. 233, pp. 365-380, 1942.
[77] Ramirez, R. W. , “The FFT fundamentals and concepts”, Endlewood Cliffs, New Jersey, 1985.
[78] Cooley, J. W., Lewis, P. A. W., and Welch, P. D., “The fast Fourier transform and its application,” IEEE Transactions on Educations, vol. 12, no.1, pp. 27-34, March 1969.
[79] Jordan, H. and Lax, F., “Untersuchung des Einflusses einer nicht in den Nutmittellinien konzentriert vorausgesetzten Durchflutung auf die doppelt verkettete streuung”, E. u. M., pp. 393-396, 1940.
[80] Carter, F. W., “Air-Gap Induction”, El. World and Engineering, p.384, 1901.
[81] Weber, W., “Der Nutungsfaktor in elektrischen Machinen”, ETZ, pp. 858-861,1928.
[82] Taegen, F., “Die Bedeutung der Läufernutschlitze für die Theorie der Asynchronmaschine mit Käfigläufer”, A. f. E., pp.373-386, 1964.
[83] Krebs, E. and Jordan, H., “pendelmomente von Käfigankermotoren”, A. f. E., pp.501-507, 1935.
[84] O’Neil, Peter V., “Advanced Engineering Mathematics (international student edition)”, Thomson, U.S.A., 2006.
[85] CNS 14400, 低壓三相鼠籠型高效率感應電動機(一般用)。
[86] Schuiski, W., “Zur Messung der Zusatzverluste von Asynchronmotoren (Determination of Stray-Load Losses in Induction Motors)”, ETZ-A, 1965, pp. 779-780.
[87] Chavarnoz, R. and Pasdeloup, M., “Les pertes dans les moteurs d’induction ( Stray-Load Losses in Induction Motors)”, Bulletin de la direction des études et recherches, Nr. 2/1969, pp. 61-105.
[88] Oberretl, K., “13 Regeln für minimale Zusatzverluste in Induktionsmotoren (13 Rules for Minimized Stray-Load Losses in Induction Motors)”, Bull. Oerlikon, 1969, Nr. 389/390, pp. 2-12.
[89] Kunihiro, N., Nishihama, K., Iizuka, M., Sugimoto, K., and Sawahata, M., “Investigation Into Loss Reduced Rotor Slot Structure by Analyzing Local Behaviors of Harmonic Magnetic Fluxes in Inverter-Fed Induction Motor”, IEEE Transactions on Industry Applications, Volume: 53, Issue: 2, pp.1070-1077, March-April 2017.
[90] Nee, H.-P., “Rotor slot design of inverter-fed induction motors”, Electrical Machines and Drives, Seventh International Conference, 1995.
[91] Energy Efficiency Office, “Report on Study on International Efficiency (IE) Efficiency Classes for Low Voltage AC Motors”, December 2015, from http://www.emsd.gov.hk/filemanager/en/content_764/Report on International Efficiency Efficiency Classes for Low Voltage AC Motors.pdf .
[92] Anish Singh Walia (2017), Types of Optimization Algorithms used in Neural Networks and Ways to Optimize Gradient Descent, June 10, 2017, from https://medium.com/towards-data-science/types-of-optimization-algorithms-used-in-neural-networks-and-ways-to-optimize-gradient-95ae5d39529f.
[93] Guim Perarnau (2017), Fantastic GANs and where to find them, Mar 20, 2017, from http://guimperarnau.com/blog/2017/03/Fantastic-GANs-and-where-to-find-them.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top