(3.239.33.139) 您好!臺灣時間:2021/02/27 00:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳璿文
研究生(外文):Syuan-Wen Chen
論文名稱:以丙烯酸酯聚合物為基底之直流驅動振盪器及其應用
論文名稱(外文):DC-Driven Acrylate-Copolymer-Based Electrothermal Oscillator and Its Application in Thermopneumatic Diffuser Pump
指導教授:楊燿州楊燿州引用關係
口試日期:2017-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:141
中文關鍵詞:正溫度係數電熱式振盪器丙烯酸酯聚合物熱氣動式無閥擴散幫浦
外文關鍵詞:Positive temperature coefficientElectrothermal oscillatorAcrylate copolymerNozzle-diffuser valveless thermopneumatic pump
相關次數:
  • 被引用被引用:0
  • 點閱點閱:66
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
導電高分子材料之正溫度係數(Positive temperature coefficient, PTC)現象已被廣泛認同與高分子材料結晶度有關。非晶質(Amorphous)高分子材受熱時由於體積熱膨脹過小以致於無法產生龐大正溫度係數現象。其材料包含絕緣高分子基材與導電粒子,在特定溫度區間材料阻值有數個數量級距變化。本研究將丙烯酸丁酯與丙烯酸十八酯照光合成丙烯酸酯聚合物並混合石墨球導電粒子。將此材料導入微機電製程所形成超高敏度溫度感測器,結合微型加熱器提出一全新電熱式振盪器,透過溫度感測器自行切換微型加熱器之直流電源供應,產生穩定溫度振盪現象。本研究之元件具有製程容易、運作原理單純、與簡單系統架構等優勢。本研究同時提出利用電熱式振盪器穩定溫度振盪現象結合PDMS翻模氣泡薄膜與 Nozzle-Diffuser流道形成熱氣動式無閥擴散幫浦之應用。於系統直流電源供應8V電壓於微型加熱器,6V電壓於溫度感測器成功產生振幅為56.5℃,週期為20.3秒穩定週期振盪。利用Labview人機介面同步儀器量測四項參數。透過訊號擷取卡(DAQ)監測PTC材料兩端電壓變化推算電阻變化,利用K-Type熱電偶量測加熱器與感測器溫度,同步記錄電源供應器電電壓與電流值分析系統特性。探討振盪系統失效原因並提出壓克力與不鏽鋼材料夾具改良元件。透過不同材料夾具與加熱器電壓供給,可使振盪器擁有不同振盪週期與溫度振盪區間。於微型幫浦流量量測利用數位攝影機監測流體於出口端管內流動位移。成功於直流電熱式振盪器產生溫度振盪振幅8˚C,振盪頻率0.05Hz下使管內流體10秒內前進1.54mm,換算流量為1.813μL/min。
In this work, we present a novel electrothermal oscillator by employing ultra-sensitive temperature sensor for self-switching on/off a microheater with a DC power supply that produces stable temperature oscillating phenomenon. The fabricated device features advantages such as simple fabrication process, easy operating method, and simple system architecture. The periodic electric current switching for activating a nozzle-diffuser valveless thermopneumatic pump with the electrothermal oscillator was demonstrated by supplying a constant DC voltage. The voltages applied to the micro heater and the PTC copolymer sensor are 8 V and 6 V that had successfully produced stable oscillating phenomenon with the amplitude of the oscillation is 56.5 ℃ and the period of oscillation is 20.3 s. A data acquisition (DAQ) card was employed to measure the resistance of the PTC copolymer sensor. A K-type thermocouple was used to measure the temperature near the microheater and sensor. In addition, the cause of oscillating failure was studied and discussed, and can be improved by fixing the PTC copolymer with acrylic and stainless steel plates. For the flow rate measurement of the micropump, the fluid meniscus displacement in the tube connected to the outlet is recorded by a digital video camera. The amplitude of the oscillation is about 8˚C. The frequency of oscillation is about 0.05Hz. The flow rate is estimated about 1.813μL/min.
致謝 I
摘要 III
ABSTRACT V
目錄 VII
圖目錄 XI
表目錄 XVI
符號表 XVIII
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 3
1.3 文獻回顧 4
1.3.1 PTC正溫度係數導電高分子複合材料 4
1.3.2 微機電致動器 15
1.3.3 微型幫浦與熱氣動式致動器 18
1.3.4 Nozzle-Diffuser 擴散式無閥幫浦 22
1.4 研究方法 25
1.5 全文架構 27
第二章 研究理論與設計 29
2.1 本章介紹 29
2.2 研究理論 29
2.2.1 PTC正溫度係數高分子聚合物理論與導電機制 29
2.2.2 熱氣動式致動器理論 37
2.2.3 Nozzle-Diffuser 無閥流道理論 41
2.3 直流電熱式振盪器系統之設計 45
2.3.1 微型加熱器之設計 45
2.3.2 超高敏感度溫度感測器之設計 46
2.3.3 直流電熱式振盪器之設計 47
2.4 本章結論 50
第三章 製程方法與設計 51
3.1 本章介紹 51
3.2 NOZZLE-DIFFUSER無閥擴散式熱氣動幫浦之設計 52
3.2.1 運用熱氣泡薄膜形成熱氣動式致動器之設計 53
3.2.2 Nozzle-Diffuser無閥流道之設計 54
3.2.3 熱氣動式微型幫浦之熱傳遞模型 54
3.3 PTC正溫度係數材料之配置與製程 58
3.4 元件製作流程 61
3.5 光罩設計與製作 63
3.6 製程設計 67
3.6.1 基材清洗 67
3.6.2 曝光微影製程 68
3.6.3 金屬鍍膜與掀舉製程 74
3.6.4 晶圓切割 75
3.6.5 PDMS翻模製程 77
3.6.6 元件組裝 80
3.6.7 元件製作成果 85
3.7 本章結論 88
第四章 實驗量測方法之設計與架設 89
4.1 本章介紹 89
4.2 PTC正溫度係數材料性質之量測方法 90
4.2.1 玻璃轉換溫度區間之量測 90
4.2.2 溫度-電阻量測平台之架設 92
4.3 直流熱電式振盪器系統特性量測 93
4.4 微型幫浦之流量量測 98
4.5 本章結論 99
第五章 研究結果與討論 101
5.1 本章介紹 101
5.2 PTC正溫度係數丙烯酸酯聚合物材料特性量測 101
5.3 直流驅動熱電式熱振盪器系統特性量測 104
5.3.1 振盪器系統特性分析 104
5.3.2 振盪器系統穩定性分析 110
5.3.3 系統振盪失穩分析 115
5.3.4 材料夾具設計及成效 118
5.4 直流驅動微型幫浦之流量量測 121
5.5 本章結論 123
第六章 結論與未來展望 125
6.1 本文結論 125
6.2 未來展望 127
參考文獻 129
附錄 A 133
附錄 B 139
[1]S. D. Senturia, Microsystem design: Kluwer Academic Publishers, 2001.
[2]T. Yokota, Y. Inoue, Y. Terakawa, J. Reeder, M. Kaltenbrunner, T. Ware, K. Yang, K. Mabuchi, T. Murakawa, M. Sekino, W. Voit, T. Sekitani, and T. Someya, “Ultraflexible, large-area, physiological temperature sensors for multipoint measurements,” Proc Natl Acad Sci U S A, vol. 112, no. 47, pp. 14533-8, Nov 24, 2015.
[3]G. G. Harman, “Hard Gallium Alloys for Use as Low Contact Resistance Electrodes and for Bonding Thermocouples into Samples,” Review of Scientific Instruments, vol. 31, no. 7, pp. 717-720, 1960.
[4]E.Frydman, UK Patent Specification.
[5]F. Kohler., US patents, 29 March (1966).
[6]J. MEYER, “Glass transition temperature as a guide to selection of polymers suitable for PTC materials,” Polymer Engineering & Science, pp. 13.6: 462-468., 1973.
[7]H. Xu, "Positive Temperature Coefficient Effect of Polymer Nanocomposites," Polymer Nanocomposites: Electrical and Thermal Properties, X. Huang and C. Zhi, eds., pp. 83-110, Cham: Springer International Publishing, 2016.
[8]J. Jeon, H. B. Lee, and Z. Bao, “Flexible wireless temperature sensors based on Ni microparticle-filled binary polymer composites,” Adv Mater, vol. 25, no. 6, pp. 850-5, Feb 13, 2013.
[9]J. Feng, and C. M. Chan, “Double positive temperature coefficient effects of carbon black-filled polymer blends containing two semicrystalline polymers,” Polymer, vol. 41, no. 12, pp. 4559-4565, 2000.
[10]Y. Zeng, G. Lu, H. Wang, J. Du, Z. Ying, and C. Liu, “Positive temperature coefficient thermistors based on carbon nanotube/polymer composites,” Sci Rep, vol. 4, pp. 6684, Oct 20, 2014.
[11]H. Pang, Y.-C. Zhang, T. Chen, B.-Q. Zeng, and Z.-M. Li, “Tunable positive temperature coefficient of resistivity in an electrically conducting polymer/graphene composite,” Applied Physics Letters, vol. 96, no. 25, pp. 251907, 2010.
[12]Q. Long, P. Jae-Sung, and Y. B. Gianchandani, “Bent-beam electrothermal actuators-Part I: Single beam and cascaded devices,” Journal of Microelectromechanical Systems, vol. 10, no. 2, pp. 247-254, 2001.
[13]K. Udeshi, and Y. B. Gianchandani, "A DC-powered, tunable, fully mechanical oscillator using in-plane electrothermal actuation." pp. 502-505.
[14]F. C. M. Van de Pol, H. T. G. Van Lintel, M. Elwenspoek, and J. H. J. Fluitman, “A thermopneumatic micropump based on micro-engineering techniques,” Sensors and Actuators A: Physical, vol. 21, no. 1, pp. 198-202, 1990.
[15]B. T. Chia, H. H. Liao, and Y. J. Yang, "A novel thermo-pneumatic peristaltic micropump with low temperature elevation." pp. 2286-2289.
[16]E. S. G. Stemme, “A vavleless diffuser/nozzle-based fluid pump,” Sens. Actuators, vol. vol. A39, pp. pp. 159-167, 1993.
[17]T. Jr-Hung, and L. Liwei, “A thermal-bubble-actuated micronozzle-diffuser pump,” Journal of Microelectromechanical Systems, vol. 11, no. 6, pp. 665-671, 2002.
[18]S. R. Broadbent, and J. M. Hammersley, “Percolation processes,” Mathematical Proceedings of the Cambridge Philosophical Society, vol. 53, no. 03, pp. 629, 2008.
[19]張繼升, “可撓式正溫度係數高分子電阻薄膜之研究,” 化學工程研究所, 國立清華大學, 2006.
[20]D. Stauffer, Introduction to Percolation Theory, London: Taylor and Francis, 1985.
[21]R. strumpler, and J. Glatz-Reichenbach, “FEATURE ARTICLE Conducting Polymer Composites,” Journal of Electroceramics, vol. 3, no. 4, pp. 329-346, 1999.
[22]M. Sumita, K. Sakata, S. Asai, K. Miyasaka, and H. Nakagawa, “Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black,” Polymer Bulletin, vol. 25, no. 2, pp. 265-271, 1991.
[23]J. G. Simmons, “Electric Tunnel Effect between Dissimilar Electrodes Separated by a Thin Insulating Film,” Journal of Applied Physics, vol. 34, no. 9, pp. 2581-2590, 1963.
[24]Y. W. Erol Sancaktar, “The effect of pressure on the initial establishment of conductive paths in electronically conductive adhesives,” Journal of Adhesion Science and Technology vol. 10, pp. 1221-1235, 1996.
[25]A. Mikrajuddin, F. G. Shi, S. Chungpaiboonpatana, K. Okuyama, C. Davidson, and J. M. Adams, "Electrically isotropic conductive adhesives: an effective contact resistance model for conductivity development." pp. 282-287.
[26]O. Kazuyuki, and N. Yoshihide, “A New Resistor Having An Anomalously Large Positive Temperature Coefficient,” Japanese Journal of Applied Physics, vol. 10, no. 1, pp. 99, 1971.
[27]C. Klason, and J. Kubát, “Anomalous behavior of electrical conductivity and thermal noise in carbon black-containing polymers at Tg and Tm,” Journal of Applied Polymer Science, vol. 19, no. 3, pp. 831-845, 1975.
[28]H. M. Al - Allak, A. W. Brinkman, and J. Woods, “I-V characteristics of carbon black-loaded crystalline polyethylene,” Journal of Materials Science, vol. 28, no. 1, pp. 117-120, 1993.
[29]Y. P. Mamunya, H. Zois, L. Apekis, and E. V. Lebedev, “Influence of pressure on the electrical conductivity of metal powders used as fillers in polymer composites,” Powder Technology, vol. 140, no. 1, pp. 49-55, 2004.
[30]H.-J. Kwon, S. W. Lee, and S. S. Lee, “Braille dot display module with a PDMS membrane driven by a thermopneumatic actuator,” Sensors and Actuators A: Physical, vol. 154, no. 2, pp. 238-246, 2009.
[31]A. Werber, and H. Zappe, “Thermo-pneumatically actuated, membrane-based micro-mirror devices,” Journal of Micromechanics and Microengineering, vol. 16, no. 12, pp. 2524-2531, 2006.
[32]A. Olsson, “Valve-less Diffuser Micropumps,” 1998.
[33]F. White, FIuid Mechanics, p.^pp. pp 381-383, New York: McGraw-Hill, 1986.
[34]九介企業股份有限公司. "桌上型伺服旋轉塗佈機系列," http://www.everisland.com/index.php?route=product/product&product_id=95.
[35]E. H. Klaassen, K. Petersen, J. M. Noworolski, J. Logan, N. I. Maluf, J. Brown, C. Storment, W. McCullcy, and G. T. A. Kovacs, "Silicon Fusion Bonding and Deep Reactive Ion Etching a New Technology for Microstructures." pp. 556-559.
[36]M. J. Owen, and P. J. Smith, “Plasma treatment of polydimethylsiloxane,” Journal of Adhesion Science and Technology, vol. 8, no. 10, pp. 1063-1075, 1994.
[37]陳育詩, “矽膠材質於微幫浦之研究,” 應用力學研究所, 國立臺灣大學, 2003.
[38]T. Instruments. "Dynamic Mechanical Analyzers Q800," http://www.tainstruments.com/products/rheology/dynamic-mechanical-analyzers/.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔