(3.238.186.43) 您好!臺灣時間:2021/02/28 14:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:紀丞祐
研究生(外文):Cheng-You Ji
論文名稱:電動車驅動系統空間配置及殼體設計
論文名稱(外文):Space Configuration and Housing Design for Electric Vehicle Drive Unit
指導教授:鄭榮和
口試日期:2017-07-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:114
中文關鍵詞:電動車電動驅動系統一體化設計結構最佳化空間配置有限元素殼體設計
外文關鍵詞:electric vehicleelectric drive unitintegrated designstructural optimizationspace configurationfinite elementhousing design
相關次數:
  • 被引用被引用:0
  • 點閱點閱:107
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以國內車廠開發之電動車驅動系統為研究對象,此驅動系統包括馬達、馬達驅動器、齒輪箱及差速器,以其體積最小化為目標,建立一套結構優化流程。針對兩大部分使驅動系統體積減小,第一部分是改善驅動系統內部空間配置情況,在不改變驅動系統的動力性能前提下,以各元件尺寸及位置為設計變數,同時滿足車室空間、結構強度與剛度、自然頻率、振動方向及受力情況,且確保元件彼此之間無干涉,進行元件參數及配置最佳化設計,使內部空間體積最小化;第二部分是以新版配置結果,設計更為緊湊的一體化殼體,並進行殼體結構拓樸設計,找出最佳殼體結構。一般驅動系統設計時,通常是各元件分開設計,本研究除了進行元件最佳化設計,並考慮彼此之間相互影響性,使電動驅動系統在體積最小化的同時,又能滿足限制條件,設計更為緊湊的組裝配合。
The purpose of this study is to minimize the volume of drive unit including motor, inverter, gearbox and differential for electric vehicle. To achieve this, we build a two steps structural optimization process. The first step is to improve the internal space configuration of the drive unit by structural size optimization design that selects the size and location of the components for the design variables. It must satisfy the structural strength, structural stiffness, natural frequency, direction of vibration and force restraint, while ensuring that the components do not interfere with each other and the power performance do not change. The second step is designing a more compact housing based on the new configuration result, and then using structural topology optimization design to find the best housing structure. This process reduces the volume and be a more compact assembly of electric drive unit under limited conditions.
致謝 I
摘要 II
ABSTRACT III
目錄 IV
圖目錄 VII
表目錄 X
符號說明 XI
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 3
1.3 論文架構 4
1.4 使用軟體簡介 7
1.4.1 電腦輔助繪圖軟體CATIA 7
1.4.2 電腦輔助繪圖軟體Creo Parametric 7
1.4.3 有限元素分析軟體Abaqus 7
1.4.4 工程計算軟體MITCalc 8
1.4.5 機構分析軟體ADAMS 8
1.4.6 程序整合暨設計最佳化工具Optimus 8
1.4.7 非參數結構最佳化軟體Tosca 8
第二章 理論背景與文獻回顧 9
2.1 電動車驅動系統簡介 9
2.1.1 電動驅動系統設計 10
2.1.2 電動驅動系統規格計算 13
2.1.3 電動驅動系統結構配置 15
2.2 盤點電動車驅動系統發展概況 17
2.2.1 ZF - EVD1 17
2.2.2 Magna - ERAD1800(Electric Rear Axle Drive) 18
2.2.3 GKN Driveline - eDrive 19
2.2.4 Continental - Axle Drive System 20
2.2.5 Chevrolet - Bolt EV驅動系統 21
2.2.6 Chevrolet - 1ET35 22
2.2.7 各廠驅動系統特色整理 23
2.3 工程最佳化設計 25
2.3.1 最佳化數學模型 25
2.3.2 結構最佳化 26
2.4 文獻回顧 28
2.4.1 振動學理論 28
2.4.2 軸設計 31
2.4.3 軸承設計及位置配置 33
2.4.4 齒輪箱殼體設計 34
2.4.5 文獻回顧小結 36
第三章 原始配置分析與探討 38
3.1 齒輪軸承受力分析 42
3.1.1 齒輪嚙合各方向分力 42
3.1.2 軸承靜態分析 44
3.1.3 軸承動態分析 49
3.2 驅動系統模態分析 54
3.2.1 模型建立 54
3.2.2 分析結果 56
3.3 馬達軸應力分析 59
3.3.1 模型建立 59
3.3.2 分析結果 60
3.4 小結 61
第四章 驅動系統空間配置最佳化 62
4.1 驅動系統原設計探討 63
4.2 元件參數最佳化設計 64
4.2.1 設計變數 64
4.2.2 限制條件 66
4.2.3 敏感度分析 71
4.2.4 最佳化結果 79
4.3 配置最佳化設計 83
4.3.1 設計變數 83
4.3.2 限制條件 84
4.3.3 最佳化結果 85
4.4 小結 89
第五章 驅動系統一體化殼體設計 90
5.1 原始殼體設計探討 90
5.2 新版殼體設計 91
5.3 原始殼體分析 94
5.3.1 原始殼體模態分析 95
5.3.2 原始殼體結構分析 97
5.3.3 原始殼體穩態動態分析 99
5.4 新版殼體結構拓樸最佳化設計 102
5.4.1 結構拓樸最佳化設計 102
5.4.2 新版殼體結構肋最佳化問題定義 103
5.4.3 新版殼體結構肋最佳化結果 105
5.5 小結 108
第六章 研究總結與未來方向 109
6.1 總結 109
6.2 未來方向 110
參考文獻 111
[1]C. C. Chan, “The Past, Present and Future of Electric Vehicle Development,” Proc. IEEE 1999 Int. Conf. Power Electronics and Drive Systems, vol. 1, pp. 11-13, 1999.
[2]Global comparison of light-duty vehicle fuel economy/GHG emissions standards, Available: http://www.theicct.org/
[3]電腦輔助繪圖軟體CATIA, Available:
http://www.simutech.com.tw/product-simulia-side-nav01.php?cid=13
[4]電腦輔助繪圖軟體Creo Parametric, Available:
http://www.ptc-taiwan.com/cad/creo/parametric
[5]有限元素分析軟體Abaqus, Available:
http://www.simutech.com.tw/product-simulia-side-nav02.php?cid=1&kid=25
[6]工程計算軟體MITCalc, Available: http://www.mitcalc.com/
[7]機構分析軟體ADAMS, Availbale: http://www.mscsoftware.com/product/adams
[8]程序整合暨設計最佳化工具Optimus, Available:
http://www.cybernet-ap.com.tw/zh.php?m=363&t=67
[9]非參數結構最佳化軟體Tosca, Available:
http://www.simutech.com.tw/product-simulia-side-nav02.php?cid=1&kid=26
[10]V. Vodovozov, Electric Drive Systems and Operation, eBooks at bookboon.com, 2012.
[11]V. Vodovozov, Electric Drive Dimensioning and Tuning, eBooks at bookboon.com, 2012.
[12]M. Zeraoulia, M. E. H. Benbouzid and D. Diallo, “Electric Motor Drive Selection Issues for HEV Propulsion Systems: A Comparative Study,” IEEE Transactions on Vehicular Technology, vol. 55, no. 6, pp.1756 -1764, 2006.
[13]Z. Peng and S. S. Williamson, “Recent Status and Future Prospects of Integrated Starter-Generator Based Hybrid Electric Vehicles,” IEEE Vehicle Power and Propulsion Conference, pp.1-8, 2008.
[14]A. Turner and C. Cavallino, “Multi-Speed EV/FCV Transmission with Seamless Gearshift,” CTI Conference, 2009.
[15]L. Cai and X. Zhang, “Match and Optimization of Series Hybrid Bus Powertrain Parameters,” Applied Mechanics and Materials, vol. 121-126, pp. 2710-2714, 2012.
[16]张罗曦, “电动车用集成式驱动系统的研究,” 武汉理工大学车辆工程硕士论文, 2010.
[17]H. Shimizu, T. Okubo, I. Hirano and S. Ishikawa, “Development of an Integrated Electrified Powertrain for a Newly Developed Electric Vehicle,” SAE Technical Paper 2013-01-1759, 2013.
[18]H. J. Domain, “Innovative Products from ZF,” ZF- Technik Workshop, 2012.
[19]Magna Shows Scalable Electric Axle for Parallel Hybrids, Available:
http://drivelinenews.com
[20]Integrated eDrive System, Available: http://www.gkndriveline.com
[21]T. Gassmann and C. Gasch, “Transmission Technology for Hybrid and Electric Vehicle,” SAE Technical Paper 2012-28-0001, 2012.
[22]A. Vignaud and H. Fennel, “Efficient Electric Powertrain with Externally Excited Synchronous Machine without Rare Earth Magnets Using the Example of the Renault System Solution,” International Vienna Motor Symposium, 2012.
[23]L. Jinming, A. Mohammad, C. Peter, H. Shawn and J. Youngsoo, “Design of the Chevrolet Bolt EV Propulsion System,” SAE Technical Paper 2016-01-1153, 2016.
[24]T. Schieffer, M. Jeffers, S. Hawkins and A. Heisel, “Spark EV Propulsion System Integration,” SAE Technical Paper 2014-01-1792, 2014.
[25]H. Shawn, H. Alan, A. David, R. Khwaja and M. Rodney, “Design Optimization, Development and Manufacturing of General Motors New Battery Electric Vehicle Drive Unit (1ET35),” SAE Technical Paper 2014-01-1806, 2014.
[26]徐葉良, 工程最佳化設計, 宏明圖書有限公司, 1997.
[27]S.S. Rao, Mechanical Vibration, 5th Ed, Prentice Hall, 2011.
[28]C. Liu, “A Computerized Optimization Method Of Engine Mounting System,” SAE Technical Paper 2003-01-1461, 2003.
[29]R. G. Budynas, Shigley’s Mechanical Engineering Design, 10th Ed, McGraw-Hill Education, 2015.
[30]H. Y. Ahmad, “Fundamental Recommendations for the Design Configuration of Rotor Shafts for Use in Electric Motors and Generators,” XVIII International Colloquium on Mechanical Fatigue of Metals, 2016.
[31]F. Mendi, T. Baskal, K. Boran and F. E. Boran, “Optimization of Module, Shaft Diameter and Rolling Bearing for Spur Gear Through Genetic Algorithm,” Expert Systems with Applications, vol. 37, pp. 8058-8064, 2010.
[32]N. Rastogi, “Design of Composite Driveshafts for Automotive Applications,” SAE Technical Paper 2004-01-0485, 2004.
[33]Z. Zifeng, “Optimization of Gear Shaft Size Based on Modal Analysis,” Journal of East China Jiaotong University, 2014.
[34]X. F. Wang, “Rotary Shaft Structure Optimization of High-Temperature Motor Based on Ansys,” International Journal of Smart Home, vol. 9, no. 5, pp. 73-82, 2015.
[35]ISO Dimensional system and bearing numbers, Available:
http://www.jp.nsk.com/app01/en/ctrg/index.cgi?gr=dn&pno=nsk_cat_e728g_1
[36]R. B. Rajeswara and T. Rajiv, “Optimum Design of Rolling Element Bearings Using Genetic Algorithms,” Mechanism and Machine Theory, vol. 42, pp. 233-250, 2007.
[37]S. Srinivasan, E. H. Maslen and L. E. Barrett, “Optimization of Bearing Locations for Rotor Systems with Magnetic Bearings,” Journal of Engineering for Gas Turbines and Power, vol. 119, pp. 464-468, 1997.
[38]L. Chiwei, “Simultaneous Optimal Design of Parameters and Tolerance of Bearing Locations for High-Speed Machine Tools Using a Genetic Algorithm and Monte Carlo Simulation Method,” International Journal of Precision Engineering and Manufacturing, vol. 13, no. 11, pp. 1983-1988, 2011.
[39]张喜清, “减小变速器轴承支反力的齿轮位置布局优化,” 中国机械工程, 第21卷, 第13期, 2010.
[40]張桓毓,“電動車用傳動箱體結構最佳化設計方法,” 國立台灣大學碩士論文, 2011.
[41]T. H. Chong, I. Bae and G. J. Park, “A New and Generalized Methodology to Design Multi-Stage Gear Drives by Integrating the Dimensional and the Configuration Design Process,” Mechanism and Machine Theory, vol. 37, pp. 295–310, 2002.
[42]R. C. Sanghvi, A. S. Vashi, H. P. Patolia and R. G. Jivani, “Multi-Objective Optimization of Two-Stage Helical Gear Train Using NSGA-II,” Journal of Optimization, vol. 2014, pp. 1-8, 2014.
[43]S. Golabi, J. J. Fesharaki and M. Yazdipoor, “Gear Train Optimization Based on Minimum Volume/Weight Design,” Mechanism and Machine Theory, vol. 73, pp. 197-217, 2014.
[44]M. Thirugnanasambandam, “Design of Transmission Housing,” Proc Indian Natn Sci Acad, vol. 75, no.4, pp. 137-143, 2009.
[45]何鄭翰, “電動車動力系統振動分析與優化設計之研究,” 國立台灣大學碩士論文, 2015.
[46]S. Draca, “Finite Element Model of a Double-Stage Helical Gear Reduction,” Master thesis, University of Windsor, 2006.
[47]https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem

[48]C. Young, “Modeling Contact in Abaqus with Nonlinear Springs,” SAE Technical Paper 2017-01-0454, 2017.
[49]R. G. Budynas, Shigley’s Mechanical Engineering Design, 10th Ed, McGraw-Hill Education, 2015.
[50]A. C. Ugural, Mechanical Design, McGraw-Hill Education, 2012.
[51]M. P. Bendsoe and N. Kikuchi, “Generating Optimal Topologies in Structural Design Using a Homogenization Method,” Computer Methods in Applied Mechanics and Engineering, vol. 71, pp. 197-224, 1988.
[52]M. P. Bendsoe, “Optimal Shape Design as a Material Distribution Problem,” Structural Optimization, vol. 1, pp. 193-202, 1989.
[53]M. P. Bendsoe and O. Sigmund, Topology Optimization: Theory, Methods and Applications, Berlin Springer, 2nd Ed, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔