|
[1]F. J. DiSalvo, “Thermoelectric cooling and power generation,” Science, vol. 285, no. 5428, pp. 703-706, Jul 30, 1999. [2]Z. G. Chen, G. Han, L. Yang, L. N. Cheng, and J. Zou, “Nanostructured thermoelectric materials: Current research and future challenge,” Progress in Natural Science-Materials International, vol. 22, no. 6, pp. 535-549, Dec, 2012. [3]X. B. Zhao, S. H. Yang, Y. Q. Cao, J. L. Mi, Q. Zhang, and T. J. Zhu, “Synthesis of Nanocomposites with Improved Thermoelectric Properties,” Journal of Electronic Materials, vol. 38, no. 7, pp. 1017-1024, Jul, 2009. [4]V. Wagner, G. Dolling, B. M. Powell, and G. Landwehr, “Lattice-Vibrations of Bi2te3,” Physica Status Solidi B-Basic Research, vol. 85, no. 1, pp. 311-317, 1978. [5]W. Kullmann, G. Eichhorn, H. Rauh, R. Geick, G. Eckold, and U. Steigenberger, “Lattice-Dynamics and Phonon-Dispersion in the Narrow Gap Semiconductor Bi2te3 with Sandwich Structure,” Physica Status Solidi B-Basic Research, vol. 162, no. 1, pp. 125-140, Nov, 1990. [6]J. H. Zhou, C. G. Jin, J. H. Seol, X. G. Li, and L. Shi, “Thermoelectric properties of individual electrodeposited bismuth telluride nanowires,” Applied Physics Letters, vol. 87, no. 13, Sep 26, 2005. [7]B. Poudel, Q. Hao, Y. Ma, Y. C. Lan, A. Minnich, B. Yu, X. A. Yan, D. Z. Wang, A. Muto, D. Vashaee, X. Y. Chen, J. M. Liu, M. S. Dresselhaus, G. Chen, and Z. F. Ren, “High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys,” Science, vol. 320, no. 5876, pp. 634-638, May 2, 2008. [8]S. D. Bhame, D. Pravarthana, W. Prellier, and J. G. Noudem, “Enhanced thermoelectric performance in spark plasma textured bulk n-type Bi2Te2.7Se0.3 and p-type Bi0.5Sb1.5Te3 (vol 102, 211901, 2013),” Applied Physics Letters, vol. 103, no. 2, Jul 8, 2013. [9]D. L. Medlin, Q. M. Ramasse, C. D. Spataru, and N. Y. C. Yang, “Structure of the (0001) basal twin boundary in Bi2Te3,” Journal of Applied Physics, vol. 108, no. 4, Aug 15, 2010. [10]H. C. Chang, C. H. Chen, and Y. K. Kuo, “Great enhancements in the thermoelectric power factor of BiSbTe nanostructured films with well-ordered interfaces,” Nanoscale, vol. 5, no. 15, pp. 7017-7025, 2013. [11]J. Kampmeier, S. Borisova, L. Plucinski, M. Luysberg, G. Mussler, and D. Grutzmacher, “Suppressing Twin Domains in Molecular Beam Epitaxy Grown Bi2Te3 Topological Insulator Thin Films,” Crystal Growth & Design, vol. 15, no. 1, pp. 390-394, Jan, 2015. [12]K. C. Kim, J. Lee, B. K. Kim, W. Y. Choi, H. J. Chang, S. O. Won, B. Kwon, S. K. Kim, D. B. Hyun, H. J. Kim, H. C. Koo, J. H. Choi, D. I. Kim, J. S. Kim, and S. H. Baek, “Free-electron creation at the 60 degrees twin boundary in Bi2Te3,” Nature Communications, vol. 7, Aug, 2016. [13]D. Kriegner, P. Harcuba, J. Vesely, A. Lesnik, G. Bauer, G. Springholz, and V. Holy, “Twin domain imaging in topological insulator Bi2Te3 and Bi2Se3 epitaxial thin films by scanning X-ray nanobeam microscopy and electron backscatter diffraction,” Journal of Applied Crystallography, vol. 50, pp. 369-377, Apr, 2017. [14]J. M. Ziman, Electrons and phonons: the theory of transport phenomena in solids: Oxford university press, 1960. [15]J. O. Jenkins, R. W. Ure, and J. A. Rayne, “Elastic-Moduli and Phonon Properties of Bi2te3,” Physical Review B, vol. 5, no. 8, pp. 3171-&, 1972. [16]O. Hellman, and D. A. Broido, “Phonon thermal transport in Bi2Te3 from first principles (vol 90, 134309, 2014),” Physical Review B, vol. 90, no. 17, Nov 11, 2014. [17]P. K. Schelling, S. R. Phillpot, and P. Keblinski, “Comparison of atomic-level simulation methods for computing thermal conductivity,” Physical Review B, vol. 65, no. 14, Apr 1, 2002. [18]M. P. Allen, and D. J. Tildesley, Computer simulation of liquids: Oxford university press, 1989. [19]B. L. Huang, and M. Kaviany, “Ab initio and molecular dynamics predictions for electron and phonon transport in bismuth telluride,” Physical Review B, vol. 77, no. 12, Mar, 2008. [20]B. Qiu, and X. L. Ruan, “Molecular dynamics simulations of lattice thermal conductivity of bismuth telluride using two-body interatomic potentials,” Physical Review B, vol. 80, no. 16, Oct, 2009. [21]H. Rauh, R. Geick, H. Kohler, N. Nucker, and N. Lehner, “Generalized Phonon Density of States of the Layer Compounds Bi2se3, Bi2te3, Sb2te3 and Bi2(Te0.5se0.5)3, (Bi0.5sb0.5)2te3,” Journal of Physics C-Solid State Physics, vol. 14, no. 20, pp. 2705-2712, 1981. [22]C. B. Satterthwaite, and R. W. Ure, “Electrical and Thermal Properties of Bi2te3,” Physical Review, vol. 108, no. 5, pp. 1164-1170, 1957. [23]B. Qiu, and X. L. Ruan, “Thermal conductivity prediction and analysis of few-quintuple Bi2Te3 thin films: A molecular dynamics study,” Applied Physics Letters, vol. 97, no. 18, Nov 1, 2010. [24]B. Qiu, L. Sun, and X. L. Ruan, “Lattice thermal conductivity reduction in Bi2Te3 quantum wires with smooth and rough surfaces: A molecular dynamics study,” Physical Review B, vol. 83, no. 3, Jan 18, 2011. [25]K. Termentzidis, A. Pokropivny, M. Woda, S. Xiong, Y. Chumakov, P. Cortona, and S. Volz, "Structure impact on the thermal and electronic properties of bismuth telluride by ab-initio and molecular dynamics calculations." p. 012114. [26]K. Termentzidis, O. Pokropyvnyy, M. Woda, S. Y. Xiong, Y. Chumakov, P. Cortona, and S. Volz, “Large thermal conductivity decrease in point defective Bi2Te3 bulk materials and superlattices,” Journal of Applied Physics, vol. 113, no. 1, Jan 7, 2013. [27]C. Hang, S. Sun, P. Lin, and C. Wang, "Molecular Dynamics study of thermal conductivity in bismuth telluride thin films." pp. 413-416. [28]S. Li, L. Chaput, N. Stein, C. Frantz, D. Lacroix, and K. Termentzidis, “Thermal conductivity of Bi2Te3 tilted nanowires, a molecular dynamics study,” Applied Physics Letters, vol. 106, no. 23, Jun 8, 2015. [29]C. Shao, and H. Bao, "Mode-Resolved Thermal Conductivity of Freestanding and Supported Bismuth Telluride Quintuple Layer." pp. V002T11A012-V002T11A012. [30]C. Shao, and H. Bao, “Thermal transport in bismuth telluride quintuple layer: mode-resolved phonon properties and substrate effects,” Scientific Reports, vol. 6, Jun 6, 2016. [31]Y. Tong, F. J. Yi, L. S. Liu, P. C. Zhai, and Q. J. Zhang, “Molecular dynamics study on thermo-mechanical properties of bismuth telluride bulk,” Computational Materials Science, vol. 48, no. 2, pp. 343-348, Apr, 2010. [32]童宇, 易法军, 刘立胜, and 张清杰, “含圆孔 Bi2Te3 单晶拉伸变形的分子动力学模拟,” 武汉理工大学学报, no. 19, pp. 1-4, 2010. [33]B. Huang, X. Q. Yang, L. S. Liu, and P. C. Zhai, “Effects of Van der Waals Bonding on the Compressive Mechanical Behavior of Bulk Bi2Te3: A Molecular Dynamics Study,” Journal of Electronic Materials, vol. 44, no. 6, pp. 1668-1673, Jun, 2015. [34]Y. Wang, “Molecular Dynamics Study of Thermal Conductivity of Bismuth Telluride,” Thesis, University of Florida, 2013. [35]K. H. Park, M. Mohamed, Z. Aksamija, and U. Ravaioli, “Phonon scattering due to van der Waals forces in the lattice thermal conductivity of Bi2Te3 thin films,” Journal of Applied Physics, vol. 117, no. 1, Jan 7, 2015. [36]R. C. Weast, M. J. Astle, and W. H. Beyer, CRC handbook of chemistry and physics. CRC press, Boca raton FL, 1989. [37]D. Frenkel, and B. Smit, Understanding molecular simulation: from algorithms to applications: Academic press, 2001. [38]卢贵武, 李春喜, 汪文川, and 王子镐, “计算机分子模拟中静电相互作用能的计算及参数优化,” 化学物理学报, vol. 17, no. 5, pp. 547-553, 2004. [39]S. Nose, “A Unified Formulation of the Constant Temperature Molecular-Dynamics Methods,” Journal of Chemical Physics, vol. 81, no. 1, pp. 511-519, 1984. [40]S. Nose, “A Molecular-Dynamics Method for Simulations in the Canonical Ensemble,” Molecular Physics, vol. 52, no. 2, pp. 255-268, 1984. [41]H. J. C. Berendsen, J. P. M. Postma, W. F. Vangunsteren, A. Dinola, and J. R. Haak, “Molecular-Dynamics with Coupling to an External Bath,” Journal of Chemical Physics, vol. 81, no. 8, pp. 3684-3690, 1984. [42]A. S. Lemak, and N. K. Balabaev, “On the Berendsen Thermostat,” Molecular Simulation, vol. 13, no. 3, pp. 177-187, 1994. [43]Y. H. Hu, and S. B. Sinnott, “Constant temperature molecular dynamics simulations of energetic particle-solid collisions: comparison of temperature control methods,” Journal of Computational Physics, vol. 200, no. 1, pp. 251-266, Oct 10, 2004. [44]J. M. Dickey, and A. Paskin, “Computer Simulation of Lattice Dynamics of Solids,” Physical Review, vol. 188, no. 3, pp. 1407-+, 1969. [45]A. Guajardo-Cuéllar, D. B. Go, and M. Sen, “Evaluation of heat current formulations for equilibrium molecular dynamics calculations of thermal conductivity,” The Journal of chemical physics, vol. 132, no. 10, pp. 104111, 2010.
|