跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/24 21:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃重穎
研究生(外文):Chung-Ying Hwang
論文名稱:以平衡分子動力學模擬探討碲化鉍雙晶界結構對熱傳導性質之影響
論文名稱(外文):An Investigation of the Thermal boundary resistance associated with the Twin Boundary in Bismuth Telluride in use of the Equilibrium Molecular Dynamics Simulation
指導教授:黃美嬌黃美嬌引用關係
指導教授(外文):Mei-Jiau Huang
口試日期:2017-07-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:86
中文關鍵詞:平衡分子動力學聲子色散關係聲子態密度晶格熱傳導係數碲化鉍雙晶界
外文關鍵詞:Equilibrium molecular dynamicsphonon dispersion relationphonon density of stateslattice thermal conductivitytwin boundary of bismuth telluride
相關次數:
  • 被引用被引用:0
  • 點閱點閱:327
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文採用平衡分子動力學數值工具來研究碲化鉍單晶系統及具雙晶界之系統的聲子色散關係、聲子態密度及晶格熱傳導係數。原子間的交互作用力考慮了二體勢能函數、三體勢能函數及庫倫勢能函數。
在單晶系統的模擬中,於聲子色散關係的部份,考慮三體勢能會使聲頻支斜率增加,並使得低頻區聲子態密度分佈範圍增加,庫倫勢能則不會造成明顯影響。晶格熱傳導係數乃透過Green-Kubo relation求得,並以擬合函數得相關時間常數。研究發現熱傳導係數隨溫度上升而下降,且有明顯的非等向性。有考慮三體勢能時所得的熱傳導係數較大,額外添加庫倫勢能則略微降低熱傳能力。
在雙晶界系統的模擬中,發現具Te1原子層雙晶界之系統其界面能量改變不明顯,而具Te2及Bi原子層雙晶界之系統其界面能量略為上升,但對於聲子色散關係及聲子態密度的影響不大,僅多出一些橫波光頻支。與單晶系統相比,雙晶界會造成熱傳導係數在in plane及cross plane方向上約有20%~40%的下降,表示雙晶界會增加聲子的散射機會。其中,以具Te2及Bi原子層雙晶界之系統有較Te1雙晶界系統大的下降幅度;隨著雙晶界週期變小,熱傳導係數有降低的趨勢。
This thesis employs the equilibrium molecular dynamics (EMD) simulation method to calculate the phonon dispersion relations, the phonon density of states (DOS) and the lattice thermal conductivity of bismuth telluride which has either a single crystal structure or is embedded with twin boundaries. We consider the two-body potential, the three-body potential and the coulomb potential to describe the interactions between atoms. Effects of the latter two are studied.
In the simulations of Bi2Te3 single crystal, the group velocities of acoustic phonons are larger and the low-frequency region of the DOS spectrum becomes broader when the three-body potential is taken into consideration. However, the Coulomb potential has no significant impact on the vibration modes. We obtain the lattice thermal conductivity in use of the Green-Kubo relation; a low-frequency filtering process, and an exponential fitting process with two time scales are utilized. The calculation results show that the thermal conductivity is anisotropic and decreases with increasing temperature. The thermal conductivities become larger when the three-body potential is included and drop a little by the Coulomb force.
When embedded with Te1 twin boundaries, the interfacial energy of the system does not change obviously, when embedded with Te2 or Bi twin boundaries, the interfacial energy of the system increases slightly, but the phonon dispersion relation and DOS are barely affected except the presence of a few new optical branches. Compared to the simulations of the single crystal, both the in-plane and cross-plane thermal conductivities decrease about 20%-40% by the twin boundaries, especially, the Te2 and the Bi twin boundaries. Furthermore, the thermal conductivities decrease as the period of twin boundaries decreases.
誌謝 I
中文摘要 II
Abstract III
目錄 V
表目錄 VII
圖目錄 VIII
符號說明 XI
第一章 緒論 1
1-1 研究背景 1
1-2 文獻回顧 1
1-2-1 實驗量測 2
1-2-2 理論模型 3
1-2-3 分子動力學模擬 3
1-3 研究動機與目的 6
1-4 論文架構 6
第二章 碲化鉍材料、分子動力學理論與數值方法 8
2-1 碲化鉍材料 8
2-2 勢能函數 9
2-2-1 Qiu和Ruan勢能函數及參數 10
2-2-2 Huang和Kaviany勢能函數及參數 10
2-2-3 庫倫勢能及Ewald method 11
2-3 無因次化 13
2-4 初始與邊界條件 15
2-4-1初始位置與速度 15
2-4-2週期性邊界條件 16
2-5 溫度控制 16
2-6 運動方程式 17
2-7 平衡分子動力學 18
2-7-1聲子色散關係 18
2-7-2聲子態密度 19
2-7-3 Green-Kubo relation 19
2-8 模擬之收斂測試規劃 21
第三章 碲化鉍材料之能量傳輸性質 23
3-1 Ewald method測試及參數最佳化 23
3-1-1測試模型及流程簡介 23
3-1-2測試結果 23
3-2 模擬系統設置 25
3-3 穩態判斷 26
3-4 聲子色散關係 27
3-5 聲子態密度 28
3-6 原子位置徑向分佈函數 29
3-7 熱傳導係數與時間常數 30
3-7-1熱流自相關函數及Green-Kubo relation 30
3-7-2不同溫度下的熱傳導係數與時間常數 31
第四章 雙晶界對於碲化鉍材料的影響 34
4-1雙晶界模型及模擬設置 34
4-2穩態判斷 34
4-3聲子色散關係 35
4-4聲子態密度 36
4-5熱傳導係數與時間常數 36
第五章 結論與未來展望 39
5-1 結論 39
5-2 未來展望 40
參考文獻 41
圖表 45
[1]F. J. DiSalvo, “Thermoelectric cooling and power generation,” Science, vol. 285, no. 5428, pp. 703-706, Jul 30, 1999.
[2]Z. G. Chen, G. Han, L. Yang, L. N. Cheng, and J. Zou, “Nanostructured thermoelectric materials: Current research and future challenge,” Progress in Natural Science-Materials International, vol. 22, no. 6, pp. 535-549, Dec, 2012.
[3]X. B. Zhao, S. H. Yang, Y. Q. Cao, J. L. Mi, Q. Zhang, and T. J. Zhu, “Synthesis of Nanocomposites with Improved Thermoelectric Properties,” Journal of Electronic Materials, vol. 38, no. 7, pp. 1017-1024, Jul, 2009.
[4]V. Wagner, G. Dolling, B. M. Powell, and G. Landwehr, “Lattice-Vibrations of Bi2te3,” Physica Status Solidi B-Basic Research, vol. 85, no. 1, pp. 311-317, 1978.
[5]W. Kullmann, G. Eichhorn, H. Rauh, R. Geick, G. Eckold, and U. Steigenberger, “Lattice-Dynamics and Phonon-Dispersion in the Narrow Gap Semiconductor Bi2te3 with Sandwich Structure,” Physica Status Solidi B-Basic Research, vol. 162, no. 1, pp. 125-140, Nov, 1990.
[6]J. H. Zhou, C. G. Jin, J. H. Seol, X. G. Li, and L. Shi, “Thermoelectric properties of individual electrodeposited bismuth telluride nanowires,” Applied Physics Letters, vol. 87, no. 13, Sep 26, 2005.
[7]B. Poudel, Q. Hao, Y. Ma, Y. C. Lan, A. Minnich, B. Yu, X. A. Yan, D. Z. Wang, A. Muto, D. Vashaee, X. Y. Chen, J. M. Liu, M. S. Dresselhaus, G. Chen, and Z. F. Ren, “High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys,” Science, vol. 320, no. 5876, pp. 634-638, May 2, 2008.
[8]S. D. Bhame, D. Pravarthana, W. Prellier, and J. G. Noudem, “Enhanced thermoelectric performance in spark plasma textured bulk n-type Bi2Te2.7Se0.3 and p-type Bi0.5Sb1.5Te3 (vol 102, 211901, 2013),” Applied Physics Letters, vol. 103, no. 2, Jul 8, 2013.
[9]D. L. Medlin, Q. M. Ramasse, C. D. Spataru, and N. Y. C. Yang, “Structure of the (0001) basal twin boundary in Bi2Te3,” Journal of Applied Physics, vol. 108, no. 4, Aug 15, 2010.
[10]H. C. Chang, C. H. Chen, and Y. K. Kuo, “Great enhancements in the thermoelectric power factor of BiSbTe nanostructured films with well-ordered interfaces,” Nanoscale, vol. 5, no. 15, pp. 7017-7025, 2013.
[11]J. Kampmeier, S. Borisova, L. Plucinski, M. Luysberg, G. Mussler, and D. Grutzmacher, “Suppressing Twin Domains in Molecular Beam Epitaxy Grown Bi2Te3 Topological Insulator Thin Films,” Crystal Growth & Design, vol. 15, no. 1, pp. 390-394, Jan, 2015.
[12]K. C. Kim, J. Lee, B. K. Kim, W. Y. Choi, H. J. Chang, S. O. Won, B. Kwon, S. K. Kim, D. B. Hyun, H. J. Kim, H. C. Koo, J. H. Choi, D. I. Kim, J. S. Kim, and S. H. Baek, “Free-electron creation at the 60 degrees twin boundary in Bi2Te3,” Nature Communications, vol. 7, Aug, 2016.
[13]D. Kriegner, P. Harcuba, J. Vesely, A. Lesnik, G. Bauer, G. Springholz, and V. Holy, “Twin domain imaging in topological insulator Bi2Te3 and Bi2Se3 epitaxial thin films by scanning X-ray nanobeam microscopy and electron backscatter diffraction,” Journal of Applied Crystallography, vol. 50, pp. 369-377, Apr, 2017.
[14]J. M. Ziman, Electrons and phonons: the theory of transport phenomena in solids: Oxford university press, 1960.
[15]J. O. Jenkins, R. W. Ure, and J. A. Rayne, “Elastic-Moduli and Phonon Properties of Bi2te3,” Physical Review B, vol. 5, no. 8, pp. 3171-&, 1972.
[16]O. Hellman, and D. A. Broido, “Phonon thermal transport in Bi2Te3 from first principles (vol 90, 134309, 2014),” Physical Review B, vol. 90, no. 17, Nov 11, 2014.
[17]P. K. Schelling, S. R. Phillpot, and P. Keblinski, “Comparison of atomic-level simulation methods for computing thermal conductivity,” Physical Review B, vol. 65, no. 14, Apr 1, 2002.
[18]M. P. Allen, and D. J. Tildesley, Computer simulation of liquids: Oxford university press, 1989.
[19]B. L. Huang, and M. Kaviany, “Ab initio and molecular dynamics predictions for electron and phonon transport in bismuth telluride,” Physical Review B, vol. 77, no. 12, Mar, 2008.
[20]B. Qiu, and X. L. Ruan, “Molecular dynamics simulations of lattice thermal conductivity of bismuth telluride using two-body interatomic potentials,” Physical Review B, vol. 80, no. 16, Oct, 2009.
[21]H. Rauh, R. Geick, H. Kohler, N. Nucker, and N. Lehner, “Generalized Phonon Density of States of the Layer Compounds Bi2se3, Bi2te3, Sb2te3 and Bi2(Te0.5se0.5)3, (Bi0.5sb0.5)2te3,” Journal of Physics C-Solid State Physics, vol. 14, no. 20, pp. 2705-2712, 1981.
[22]C. B. Satterthwaite, and R. W. Ure, “Electrical and Thermal Properties of Bi2te3,” Physical Review, vol. 108, no. 5, pp. 1164-1170, 1957.
[23]B. Qiu, and X. L. Ruan, “Thermal conductivity prediction and analysis of few-quintuple Bi2Te3 thin films: A molecular dynamics study,” Applied Physics Letters, vol. 97, no. 18, Nov 1, 2010.
[24]B. Qiu, L. Sun, and X. L. Ruan, “Lattice thermal conductivity reduction in Bi2Te3 quantum wires with smooth and rough surfaces: A molecular dynamics study,” Physical Review B, vol. 83, no. 3, Jan 18, 2011.
[25]K. Termentzidis, A. Pokropivny, M. Woda, S. Xiong, Y. Chumakov, P. Cortona, and S. Volz, "Structure impact on the thermal and electronic properties of bismuth telluride by ab-initio and molecular dynamics calculations." p. 012114.
[26]K. Termentzidis, O. Pokropyvnyy, M. Woda, S. Y. Xiong, Y. Chumakov, P. Cortona, and S. Volz, “Large thermal conductivity decrease in point defective Bi2Te3 bulk materials and superlattices,” Journal of Applied Physics, vol. 113, no. 1, Jan 7, 2013.
[27]C. Hang, S. Sun, P. Lin, and C. Wang, "Molecular Dynamics study of thermal conductivity in bismuth telluride thin films." pp. 413-416.
[28]S. Li, L. Chaput, N. Stein, C. Frantz, D. Lacroix, and K. Termentzidis, “Thermal conductivity of Bi2Te3 tilted nanowires, a molecular dynamics study,” Applied Physics Letters, vol. 106, no. 23, Jun 8, 2015.
[29]C. Shao, and H. Bao, "Mode-Resolved Thermal Conductivity of Freestanding and Supported Bismuth Telluride Quintuple Layer." pp. V002T11A012-V002T11A012.
[30]C. Shao, and H. Bao, “Thermal transport in bismuth telluride quintuple layer: mode-resolved phonon properties and substrate effects,” Scientific Reports, vol. 6, Jun 6, 2016.
[31]Y. Tong, F. J. Yi, L. S. Liu, P. C. Zhai, and Q. J. Zhang, “Molecular dynamics study on thermo-mechanical properties of bismuth telluride bulk,” Computational Materials Science, vol. 48, no. 2, pp. 343-348, Apr, 2010.
[32]童宇, 易法军, 刘立胜, and 张清杰, “含圆孔 Bi2Te3 单晶拉伸变形的分子动力学模拟,” 武汉理工大学学报, no. 19, pp. 1-4, 2010.
[33]B. Huang, X. Q. Yang, L. S. Liu, and P. C. Zhai, “Effects of Van der Waals Bonding on the Compressive Mechanical Behavior of Bulk Bi2Te3: A Molecular Dynamics Study,” Journal of Electronic Materials, vol. 44, no. 6, pp. 1668-1673, Jun, 2015.
[34]Y. Wang, “Molecular Dynamics Study of Thermal Conductivity of Bismuth Telluride,” Thesis, University of Florida, 2013.
[35]K. H. Park, M. Mohamed, Z. Aksamija, and U. Ravaioli, “Phonon scattering due to van der Waals forces in the lattice thermal conductivity of Bi2Te3 thin films,” Journal of Applied Physics, vol. 117, no. 1, Jan 7, 2015.
[36]R. C. Weast, M. J. Astle, and W. H. Beyer, CRC handbook of chemistry and physics. CRC press, Boca raton FL, 1989.
[37]D. Frenkel, and B. Smit, Understanding molecular simulation: from algorithms to applications: Academic press, 2001.
[38]卢贵武, 李春喜, 汪文川, and 王子镐, “计算机分子模拟中静电相互作用能的计算及参数优化,” 化学物理学报, vol. 17, no. 5, pp. 547-553, 2004.
[39]S. Nose, “A Unified Formulation of the Constant Temperature Molecular-Dynamics Methods,” Journal of Chemical Physics, vol. 81, no. 1, pp. 511-519, 1984.
[40]S. Nose, “A Molecular-Dynamics Method for Simulations in the Canonical Ensemble,” Molecular Physics, vol. 52, no. 2, pp. 255-268, 1984.
[41]H. J. C. Berendsen, J. P. M. Postma, W. F. Vangunsteren, A. Dinola, and J. R. Haak, “Molecular-Dynamics with Coupling to an External Bath,” Journal of Chemical Physics, vol. 81, no. 8, pp. 3684-3690, 1984.
[42]A. S. Lemak, and N. K. Balabaev, “On the Berendsen Thermostat,” Molecular Simulation, vol. 13, no. 3, pp. 177-187, 1994.
[43]Y. H. Hu, and S. B. Sinnott, “Constant temperature molecular dynamics simulations of energetic particle-solid collisions: comparison of temperature control methods,” Journal of Computational Physics, vol. 200, no. 1, pp. 251-266, Oct 10, 2004.
[44]J. M. Dickey, and A. Paskin, “Computer Simulation of Lattice Dynamics of Solids,” Physical Review, vol. 188, no. 3, pp. 1407-+, 1969.
[45]A. Guajardo-Cuéllar, D. B. Go, and M. Sen, “Evaluation of heat current formulations for equilibrium molecular dynamics calculations of thermal conductivity,” The Journal of chemical physics, vol. 132, no. 10, pp. 104111, 2010.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top