跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/16 19:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱雅琳
研究生(外文):Ya-Lin Chiou
論文名稱:等切削力控制系統動態特性建立之研究
論文名稱(外文):Identification of Cutting Dynamic Characteristic Systems for Constant Cutting Force Control
指導教授:李貫銘李貫銘引用關係
指導教授(外文):Kuan-Ming Li
口試日期:2017-07-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:71
中文關鍵詞:等切削力掃頻實驗系統鑑別主軸電流
外文關鍵詞:constant cutting forcesweep experimentsystem identificationspindle currentadaptive control
相關次數:
  • 被引用被引用:5
  • 點閱點閱:223
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在過去數十年間工具機技術越來越成熟,在加工上應用越來越廣泛。傳統加工參數設定,通常以固定轉速或固定進給率進行加工,為避免造成刀具或機台損壞,在進給率的選擇上會以最嚴苛之條件進行設定,因此在加工時並非是最有效率的加工,而藉由適應性控制以變動進給率來維持等切削力進行加工,可以提高生產效率。
目前雖已有很多對適應性控制切削力的研究,但在建立動態系統的過程都較為複雜,通常沒有包含實際進行切削時的動態特性,故本研究是以較簡單的方法建立包含切削過程之動態系統為研究目的。除此之外,目前大部分的研究中量測切削力的訊號是使用動力計,但動力計價格昂貴且占空間,使加工受到諸多限制,故本研究擬利用主軸電流訊號取代動力計。
本研究建立切削時動態特性系統之方法為使用掃頻實驗的方式,對實驗中擷取的主軸電流訊號經過處理後進行系統鑑別來獲得代表此系統之轉移函數,透過此轉移函數設計一控制器並利用電流訊號進行等切削力控制之實驗驗證掃頻方式獲得切削動態系統的可行性。
During past decades the techniques of computer numerical control (CNC) machining centers has grown tremendously and their applications has expanded rapidly. Traditionally the operating parameters such as spindle speed or feed rate are prescribed conservatively by experienced technicians in order to protect the cutting tool or the machine. As a result, many processes run under inefficient operating conditions. For this reason, using adaptive constant cutting force control with adjustable feed rate can improve efficiency.
Although there are already many researches for adaptive cutting force control, their methods of establishing dynamic systems are complicated and seldom take actual cutting dynamic characteristics of cutting process. The purpose of this study is to identifying cutting dynamics with consideration of actual cutting dynamic characteristics during cutting process in a simple way. Besides, most researches use dynamometer to measure cutting force, but dynamometer is expensive and limiting the working space. This study will use spindle current instead of cutting forces from dynamometer as input signals.
In this study, we establishes cutting dynamic characteristic system by using sweep experiment. By using system identification with spindle current data to get a transfer function of system, we can design a proper controller based on this transfer function and verify the feasibility of constant cutting force control with spindle current.
口試委員審定書 I
致謝 II
中文摘要 III
Abstract IV
目錄 V
圖目錄 X
表目錄 XIII
第一章、緒論 1
1.1研究背景 1
1.2研究動機與目的 2
1.3論文架構 5
第二章、文獻回顧 6
2.1適應性控制 6
2.1.1 Adaptive Control with Optimization 6
2.1.2.Adaptive Control with constraints 6
2.1.3 Geometric Adaptive Control 8
2.1.4小結 8
2.2動態系統建立 8
2.2.1.理論推導方式 8
2.2.2. MRAC 11
2.2.3. 逆增益值 11
2.2.4.其他方法 11
2.2.5.小結 12
2.3訊號量測方式 12
2.3.1動力計訊號 12
2.3.2電流訊號 13
2.3.3小結 16
第三章、研究方法 18
3.1研究架構 18
3.2建立切削時的動態系統 19
3.2.1輸入訊號 20
3.2.2系統鑑別 22
3.3設計PID控制器 24
3.4電流訊號與切削力轉換 26
3.5實驗驗證 28
第四章、實驗設備架構與規劃 29
4.1簡介 29
4.2實驗架構與設備 29
4.3實驗規劃 40
4.3.1掃頻實驗設計 40
4.3.2掃頻資料範圍選取 42
4.3.3適應性控制等切削力驗證之實驗設計 44
第五章、實驗結果與討論 46
5.1微動力計訊號分析 46
5.2電流訊號分析 51
5.3PID控制結果討論 56
5.3.1控制器設計 56
5.3.2適應性控制結果討論 61
第六章、總結與未來展望 68
6.1總結 68
6.2未來展望 68
參考文獻 69
[1]Koren, Y. (1988). Adaptive control systems for machining. In American Control Conference, 1988 (pp. 1161-1167). IEEE.
[2]Masory, O., Koren, Y., & Weill, R. (1980). Adaptive control system for turning. CIRP Annals-Manufacturing Technology, 29(1), 281-284.
[3]Hwang, C. L. (1993). Adaptive turning force control with optimal robustness and constrained feed rate. International Journal of Machine Tools and Manufacture, 33(3), 483-493.
[4]Tlusty, J., & Elbestawi, M. A. A. (1977). Analysis of transients in an adaptive control servomechanism for milling with constant force. Journal of engineering for industry, 99(3), 766-772.
[5]Ma C. C. H., & Altintas, Y. (1990). Direct adaptive cutting force control of milling processes. Automatic 26(5), 899–902.
[6]Spence, A., & Altintas, Y. (1991). CAD Assisted Adaptive Control of the Milling Process. Trans. ASME J. Dynamic Systems, Measurement and Controls, 113(3), 444-450.
[7]Altintas, Y. (1994). Direct adaptive control of end milling process. International Journal of Machine Tools and Manufacture, 34 (4), 461–472.
[8]Nolzen, H., & Isermann, R. (1995, September). Fast adaptive cutting force control for milling operation. In Control Applications, 1995., Proceedings of the 4th IEEE Conference on (pp. 760-765). IEEE.
[9]Fussell, B. K., & Srinivasan, K. (1991). Adaptive control of force in end milling operations—an evaluation of available algorithms. Journal of Manufacturing Systems, 10(1), 8-20.
[10]Cus, F., Zuperl, U., Kiker, E., & Milfelner, M. (2006). Adaptive controller design for feedrate maximization of machining process. Journal of Achievements in Materials and Manufacturing Engineering, 17(1-2), 237-240.
[11]Kim, D. & Jeon, D. (2011. Fuzzy-logic control of cutting forces in CNC milling processes using motor currents as indirect force sensors. Precision Engineering, 35(1), 143-152.
[12]Liu, H., Wang, T., & Wang, D. (2015). Constant cutting force control for CNC machining using dynamic characteristic-based fuzzy controller. Shock and Vibration, 2015.
[13]Kim, T. Y., & Kim, J. (1996). Adaptive cutting force control for a machining center by using indirect cutting force measurements. International Journal of Machine Tools and Manufacture, 36(8), 925-937.
[14]Choy, H. S., & Chan, K. W. (2003). A corner-looping based tool path for pocket milling. Computer-Aided Design, 35(2), 155-166.
[15]Tounsi, N., Bailey, T., & Elbestawi, M. A. (2003). Identification of acceleration deceleration profile of feed drive systems in CNC machines. International Journal of machine tools and manufacture, 43(5), 441-451.
[16]Altintas, Y. (1992). Prediction of Cutting Force and Tool Breakage in Milling Feed Drive Current Measurements. ASME Journal Engineering for Industry, 114(4), 386.
[17]Liang, S., & Shih, A. J. (2015). Analysis of Machining and Machine Tools. Springer.
[18]Coppel, R., Abellan-Nebot, J. V., Siller, H. R., Rodriguez, C. A., & Guedea, F. (2016). Adaptive control optimization in micro-milling of hardened steels—evaluation of optimization approaches. The International Journal of Advanced Manufacturing Technology, 84(9-12), 2219-2238.
[19]Lauderbaugh, L. K., & Ulsoy, A. G. (1989). Model reference adaptive force control in milling. ASME J. Eng. Ind, 111(1), 13-21.
[20]Shin, Y. C. (1996). Control of cutting force for end milling processes using an extended model reference adaptive control scheme. Journal of Manufacturing Science and Engineering, 118, 339.
[21]Park, S. S., & Altintas, Y. (2004). Adaptive control and monitoring using the spindle integrated force sensor system. In IMECE ASME Internal Mechanical Engineering Congress.
[22]Xu, C., & Shin, Y. C. (2008). An adaptive fuzzy controller for constant cutting force in end-milling processes. Journal of Manufacturing Science and Engineering, 130(3), 031001.
[23]黃泓緯(2011)。智慧型加工控制系統之研發。國立中正大學碩士論文,嘉義縣。
[24]Khan, M. E., & Khan, F. (2012). A comparative study of white box, black box and grey box testing techniques. International Journal of Advanced Computer Sciences and Applications, 3(6), 12-1.
[25]王國安(2016)。大行程精密平台之定位控制:結合雙光子聚合技術於大尺寸微結構物之製作。國立台灣大學碩士論文,臺北市。
[26]Dorf, R. C., & Bishop, R. H. (2011). Modern control systems. Pearson.
[27]Zhou, K., & Doyle, J. C. (1998). Essentials of robust control (Vol. 104). Upper Saddle River, NJ: Prentice hall.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top