跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2025/01/17 10:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱紹博
研究生(外文):Shao-Po Chiu
論文名稱:像散式量測系統於掃針式原子力顯微鏡之設計與開發
論文名稱(外文):Design and Development of Tip-scanning Atomic ForceMicroscope based on an Astigmatic Detection System
指導教授:黃光裕
口試委員:蔡得民林沛群
口試日期:2017-06-06
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:73
中文關鍵詞:原子力顯微鏡壓電致動器像散式讀取頭表面輪廓掃描掃針式
外文關鍵詞:atomic force microscopepiezo actuatorastigmatic pick-up headprofile scanningtip-scanning
相關次數:
  • 被引用被引用:0
  • 點閱點閱:131
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
像散式原子力顯微鏡有體積較緊緻以及高量測頻寬等優點,目前的像散式原子力顯微鏡之掃描模式僅有掃樣品式,不同質量的樣品可能會影響掃描的範圍,因此在樣品製備上需要花較多的時間。本論文提出適用於像散式原子力顯微鏡的掃針方法,並設計開發適用於此方法之量測系統。透過光學模擬軟體分析出掃針模式可能造成的誤差,並利用有限元素模擬軟體探討掃描平台和夾針座的共振頻率,以及撓性導引設計時參數的選用。實驗採用雷射位移計及市售壓電掃描平台對像散式讀取頭進行校正,並以像散式讀取頭及雷射位移計對掃描平台進行量測,掃描平台尺寸為長63 mm × 寬59 mm × 高5 mm。快軸行程為5 µm,共振頻為4.5 kHz,慢軸行程為4 µm,共振頻為3.06 kHz。透過掃描樣品驗證其可行性,結果可以清楚量測高20 nm之標準樣品,並以實驗驗證此方法可在98 μm × 98 μm範圍內掃圖。
Astigmatic atomic force microscope takes advantages of compact size and high bandwidth. Until now, only sample-scanning configuration, which takes more time to prepare sample in order to avoid changing scanning range, exists. This thesis proposes a tip-scanning method suitable for astigmatic atomic force microscope, and the detection system based on the method is also constructed. Errors of this method are estimated by optical simulation software. Finite element simulation software is also used for designing the scanner and holder. The astigmatic detection system is calibrated by commercial piezo stage and laser displacement sensor. The performances of homemade scanner are tested by astigmatic pickup head and laser displacement sensor. The dimensions of the homemade scanner are 63 mm in length, 59 mm in width and 5 mm in height. The maximum actuation stroke of fast axis is 5 µm and its resonant frequency is 4.5 kHz. The maximum actuation stroke of slow axis is 4 µm and its resonant frequency is 3.06 kHz. The feasibility of system is verified by scanning standard sample. The result indicates that the system can measure up to 20 nm in height and feasible measurement range is at least 98 μm × 98 μm.
口委審定書 ……………………………………………I
誌謝 ……………………………………………II
中文摘要 ……………………………………………III
Abstract ……………………………………………IV
目錄 ……………………………………………V
圖目錄 ……………………………………………VIII
表目錄 ……………………………………………XI
符號表 ……………………………………………XII
第一章 緒論 ……………………………………………1
1.1 研究背景與動機 ……………………………………………1
1.2 文獻回顧 ……………………………………………3
1.2.1 原子力顯微鏡 ……………………………………………3
1.2.2 掃針式原子力顯微鏡 ……………………………………………5
1.2.3 掃描平台設計 ……………………………………………7
1.3 研究目標 ……………………………………………9
1.4 內容簡介 ……………………………………………10
第二章 掃針式像散式原子力顯微鏡之設計 ……………………………………………11
2.1 功能架構與概念設計 ……………………………………………11
2.2 量測子系統 ……………………………………………13
2.2.1 像散式讀取頭原理 ……………………………………………13
2.2.2 量測子系統掃針機制 ……………………………………………15
2.3 夾針座子系統設計 ……………………………………………16
2.3.1 探針懸臂固定方式 ……………………………………………16
2.3.2 對針調整機構 ……………………………………………17
2.4 掃描平台子系統設計 ……………………………………………20
2.4.1 動力來源 ……………………………………………20
2.4.2 雙軸撓性平台設計 ……………………………………………20
2.5 實體化設計 ……………………………………………21
2.5.1 夾針座實體化設計 ……………………………………………21
2.5.1 掃描平台實體化設計 ……………………………………………22
2.5.2 整體系統實體化設計 ……………………………………………24
第三章 理論與模擬分析 ……………………………………………26
3.1 光路模擬 ……………………………………………26
3.1.1 物鏡及反射面傾斜誤差 ……………………………………………27
3.1.2 物鏡及反射面平移誤差 ……………………………………………30
3.2 掃描平台動靜態模擬分析 ……………………………………………34
3.3 掃描平台模態分析 ……………………………………………39
3.4 夾針座模態模擬 ……………………………………………43
3.5 音圈馬達頻譜分析 ……………………………………………45
第四章 性能探討與分析 ……………………………………………48
4.1 掃描平台位移校正曲線 ……………………………………………48
4.2 掃描平台快慢軸頻寬量測 ……………………………………………50
4.3 像散式讀取頭之校正 ……………………………………………53
4.4 音圈馬達頻率響應 ……………………………………………55
4.5 輕敲式掃圖測試 ……………………………………………57
4.6 接觸式掃描範圍測試 ……………………………………………61
第五章 結論與未來展望 ……………………………………………62
參考文獻 ……………………………………………64
附錄 ……………………………………………68
[1]Adams, J. D., Nievergelt, A., Erickson, B. W., Yang, C., Dukic, M., and Fantner, G. E., “High-speed imaging upgrade for a standard sample scanning atomic force microscope using small cantilevers,” Review of Scientific Instruments, Vol. 85, 2014, No. 9, p. 093702.
[2]Fukuma, T., “Wideband low-noise optical beam deflection sensor with photothermal excitation for liquid-environment atomic force microscopy,” Review of Scientific Instruments, Vol. 80, 2009, No. 2, p. 023707.
[3]Ando, T., Kodera, N., Uchihashi, T., Miyagi, A., Nakakita, R., Yamashita, H., and Matada, K., “High-speed atomic force microscopy for capturing dynamic behavior of protein molecules at work,” e-Journal of Surface Science and Nanotechnology, Vol. 3, 2005, pp. 384-392.
[4]Wacaser, B. A., Maughan, M. J., Mowat, I. A., Niederhauser, T. L., Linford, M. R., and Davis, R. C., “Chemomechanical surface patterning and functionalization of silicon surfaces using an atomic force microscope,” Applied physics letters, Vol. 82, 2003, No. 5, pp. 808-810.
[5]Hwu, E.-T., Huang, K.-Y., Hung, S.-K., and Hwang, S., “Measurement of cantilever displacement using a compact disk/digital versatile disk pickup head,” Japanese Journal of Applied Physics, Vol. 45, 2006, No. 3S, p. 2368.
[6]Liao, H.-S., Chen, Y.-H., Ding, R.-F., Huang, H.-F., Wang, W.-M., Hwu, E.-T., Huang, K.-Y., Chang, C.-S., and Hwang, I.-S., “High-speed atomic force microscope based on an astigmatic detection system,” Review of Scientific Instruments, Vol. 85, 2014, No. 10, p. 103710.
[7]Yong, Y., Moheimani, S. R., Kenton, B. J., and Leang, K., “Invited review article: High-speed flexure-guided nanopositioning: Mechanical design and control issues,” Review of scientific instruments, Vol. 83, 2012, No. 12, p. 121101.
[8]Binnig, G., Quate, C. F., and Gerber, C., “Atomic force microscope,” Physical review letters, Vol. 56, 1986, No. 9, p. 930.
[9]Meyer, G. and Amer, N. M., “Novel optical approach to atomic force microscopy,” Applied physics letters, Vol. 53, 1988, No. 12, pp. 1045-1047.
[10]Fleming, A., Kenton, B., and Leang, K. K., “Bridging the gap between conventional and video-speed scanning probe microscopes,” Ultramicroscopy, Vol. 110, 2010, No. 9, pp. 1205-1214.
[11]Fukuda, S., Uchihashi, T., Iino, R., Okazaki, Y., Yoshida, M., Igarashi, K., and Ando, T., “High-speed atomic force microscope combined with single-molecule fluorescence microscope,” Review of Scientific Instruments, Vol. 84, 2013, No. 7, p. 073706.
[12]Kenton, B. J. and Leang, K. K., “Design and control of a three-axis serial-kinematic high-bandwidth nanopositioner,” IEEE/ASME Transactions on Mechatronics, Vol. 17, 2012, No. 2, pp. 356-369.
[13]Wang, W.-M., Huang, K.-Y., Huang, H.-F., Hwang, S., and Hwu, E.-T., “Low-voltage and high-performance buzzer-scanner based streamlined atomic force microscope system,” Nanotechnology, Vol. 24, 2013, No. 45, p. 455503.
[14]Liao, H.-S., Juang, B.-J., Huang, K.-Y., Hwu, E.-T., and Chang, C.-S., “Spring Constant Calibration of Microcantilever by Astigmatic Detection System,” Japanese Journal of Applied Physics, Vol. 51, 2012, No. 8S3, p. 08KB13.
[15]Meyer, G. and Amer, N. M., “Novel optical approach to atomic force microscopy,” Applied physics letters, Vol. 53, 1988, No. 12, pp. 1045-1047.
[16]Rabe, U., Hirsekorn, S., Reinstädtler, M., Sulzbach, T., Lehrer, C., and Arnold, W., “Influence of the cantilever holder on the vibrations of AFM cantilevers,” Nanotechnology, Vol. 18, 2006, No. 4, p. 044008.
[17]高雅蓓, “三軸長行程高速奈米級定位平台之設計開發,” 機械工程學研究所, 臺灣大學, 2013.
[18]鄭有博, “高速共振式壓電片掃描平台之設計與開發,” 機械工程學研究所, 臺灣大學, 2015.
[19]劉信廷, “三軸閉迴路奈米定位致動系統之設計開發與特性研究,” 機械工程學研究所, 臺灣大學, 2008.
[20]Watanabe, H., Uchihashi, T., Kobashi, T., Shibata, M., Nishiyama, J., Yasuda, R., and Ando, T., “Wide-area scanner for high-speed atomic force microscopy,” Review of Scientific Instruments, Vol. 84, 2013, No. 5, p. 053702.
[21]錢正清,“變焦光學讀取頭對精密位移量測性能之影響探討,”機械工程學研究所, 臺灣大學, 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top