( 您好!臺灣時間:2021/03/03 17:33
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Fu-An Tsai
論文名稱(外文):Investigation of High Efficiency Thermoelectric Devices
指導教授(外文):Ming-Han Liao
口試委員(外文):Sheng-Chi ChenMin-Hung Lee
外文關鍵詞:Seebeck coefficientZTbismuth telluridephotolithographydry etching
  • 被引用被引用:0
  • 點閱點閱:102
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文為製作高效能的熱電元件,藉由選用最佳的熱電材料,並分析實驗室做出的熱電元件相關係數,如絕對塞貝克係數 (absolute Seebeck coefficient)、導電率 (electrical conductivity),最終算出熱電優值 (Figure of merit, ZT),另外嘗試將二維結構的熱電元件改成三維結構以增加接觸表面積來提升整體熱電效能。量測熱電元件相關係數的部分,本論文藉由直流電源供應器 (DC power supply)、可控溫載盤、致冷晶片、熱電偶、Keithley 2400 Source/Meter機台及Agilent 34972A機台量測絕對塞貝克係數 (Absolute Seebeck coefficient),同時利用四點探針量測技術 (4-point probes method) 搭配上述機台進行各溫度下熱電元件之導電率 (electrical conductivity) 量測;三維結構熱電元件部分,主要利用電漿輔助化學氣相沉積技術 (PECVD) 進行底層二氧化矽 (SiO2) 絕緣層的沉積、三道的曝光微影技術 (photolithography) 搭配磁控濺鍍沉積技術 (magnetron sputtering deposition) 製作出鈦 (Titanium) 及鉑 (Platnium) 的下電極、碲硒化鉍 (Bi2.0Te2.7Se0.3) 的N型柱狀結構、碲銻化鉍 (Bi0.4Te3.0Sb1.6) 的P型柱狀結構,最後在使用一次曝光微影技術 (photolithography) 及乾式蝕刻技術 (Dry etching) 製作出懸空狀的橋型上電極,使N型熱電材料及P型熱電材料藉由上下電極串聯導通,以完成整體三維結構熱電元件。
In this thesis, in order to fabricate high efficiency thermoelectric (TE) devices, the best TE materials are chosen, some properties related to TE devices made by our laboratory will be analyzed, such as absolute Seebeck coefficient, electrical conductivity and Figure of merit (ZT) can be calculated ultimately. On the other hand, a column-type TE cooler is made to increase contact area and enhance the efficiency of TE devices compared with 2-D thin film TE devices. In the part of performance measurement, DC power supply, temperature controllable plate, TE cooler, thermal couple, equipment Keithley 2400 Source/Meter and equipment Agilent 34972A are used to obtain absolute Seebeck coefficient. Also, the electrical conductivity of 2-D thin film TE devices is evaluated by using above equipment with 4-point probes method. In the part of fabrication of a column-type TE cooler, a silicon dioxide layer is grown on the Si wafer to provide electrical insulation. Bottom connecter and columns are fabricated using magnetron-sputtering-deposited electrical and Bi2.0Te2.7Se0.3, Bi0.4Te3.0Sb1.6 films and patterned using photolithography process. The top connectors are fabricated by dry etching technique and patterned using photolithography process. By the above process, a 60 pairs of column-type TE cooler is fabricated.
碩士學位論文切結書 i
誌謝 ii
中文摘要 iii
目錄 v
圖目錄 vii
表目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 研究背景及動機 2
第二章 文獻回顧與理論基礎 4
2.1 熱電歷史及現況 4
2.2 熱電效應原理 5
2.2.1 塞貝克效應 (Seebeck effect) 6
2.2.2 帕爾帖效應 (Peltier effect) 7
2.2.3 湯姆森效應 (Thomson effect) 9
2.3 熱電性能係數與熱電優值 (Figure of Merit) 10
2.4 熱電材料簡介 12
2.4.1 碲化鉍 (Bismuth Telluride) 13
2.4.2 碲化鉛 (Lead Telluride) 13
2.4.3 矽鍺 (Silicon Germanium) 14
2.5 熱電裝置簡介 15
第三章 實驗方法與量測架設 18
3.1 實驗材料與藥品 18
7.2 儀器設備 21
7.3 二維熱電元件結構設計與量測 26
3.3.1 實驗流程設計及製程參數 28
3.3.2 量測技術及方法 34
3.4 三維結構熱電元件設計 43
3.4.1 實驗流程設計及製程參數 44
第四章 實驗結果與討論 68
第五章 總結 72
參考文獻 73
[1]J.M. Bee´r, “High efficiency electric power generation: The environmental role,” Prog. Energ. Combust, vol. 33, no. 2, pp. 107-134, 2007.
[2]Zhong Lin Wang, “Nanogenerators for self-powered devices and systems,” Georgia Institute of Technology, SMARTech digital repository, 2011.
[3]E. Velmre, “Thomas Johann Seebeck (1770–1831),” P. Est. Acad. Sci., vol. 13, no. 12, pp. 276-282, 2007.
[4]D. C. Spanner, “The Peltier Effect and its Use in the Measurement of Suction Pressure,” J. Exp. Bot., vol. 2, no. 5, p. 145-168, 1951.
[5]E. Altenkirch, “ber Den Nutzeffekt Der Thermosäule,” Physikalische Zeitschrift, vol. 10, pp. 560–580, 1909.
[6]E. Altenkirch, “Elektrothermische Kälteerzeugung Und Reversible Elektrische Heizung,” Physikalische Zeitschrift, vol. 12, pp. 920, 1911.
[7]V. Y. Frenkel, “Abram Fedorovich loffe (Biographical sketch),” Sov. Phys. Usp., vol. 23, pp. 531-550, 1980.
[8]H. J. Goldsmid, and R. W. Douglas, “The use of semiconductors in thermoelectric refrigeration,” British Journal of Applied physics, vol. 5, pp. 386-390, 1954.
[9]G. S. Nolas, J. S., and H. J. Goldsmid, Thermoelectrics : Basic principles and new materials developments; Springer: New York, 2001.
[10]Chang-Yi Liu, “Development of Bismuth Telluride Alloy Thin Film Thermoelectric Devices,” Department of Mechanical Engineering College of Engineering National Taiwan University, 2015.
[11]A. W. V. Herwaarden, and P. M. Sarro, “Thermal sensors based on the seebeck effect,” Sensors and Actuators, vol. 10, no. 3, pp. 321-346, 1986.
[12]J. Chen, and Z. Yan, “The influence of Thomson effect on the maximum power output and maximum efficiency of a thermoelectric generator,” J. Appl. Phys., vol. 79, no. 11, pp. 8823-8828, 1996.
[13]D. M. Rowe, CRC Handbook of Thermoelectrics, Boca Raton FL: CRC Press, 1995.
[14]R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O. Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature, vol. 413, pp. 597-602, 2001
[15]H. S. Kim, W. Liu, G. Chen, C. W. Chu, and Z. Ren, “Relationship between thermoelectric figure of meritand energy conversion efficiency,” P. Natl. Acad. Sci. USA., vol. 112, no, 27 , pp. 8205-8210, 2015
[16]M. V. Vedernikov, and E. K. Iordanishvili, “A. F. Ioffe and Origin of Modern Semiconductor Thermoelectric Energy Conversion,” IEEE, 17th International Conference on Thermoelectrics, Nagoya, Japan, Japan, 1998, pp. 37-42.
[17]T. Caillat, “Zn-Sb alloys for thermoelectric power generation,” Energy Conversion Engineering Conference, IECEC 96., Proceedings of the 31st Intersociety, vol. 2, 1996, pp.905-909.
[18]A. F. Ioffe, Semiconductor Thermoelements and Thermoelectric Colling; Infosearch: London, 1957.
[19]Robert R. Heikes, and R. W. U., Jr. Thermoelectricity: Science and Engineering; Interscicence: New York, 1961.
[20]A.J.Minnich, M.S.Dresselhaus, Z. F. Ren and G. Chen, “Bulk nanostructured thermoelectric materials: current research and future prospects,” Energy & Environmental Science, vol. 2, pp. 466-479, 2009.
[21]B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen and Z. Ren, “High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys.,” Science, vol. 320, no. 5876, pp. 634-638, 2008.
[22]X. W. Wang, H. Lee, Y. C. Lan, G. H. Zhu, G. Joshi, D. Z. Wang, J. Yang, A. J. Muto, M. Y. Tang, J. Klatsky, S. Song, M. S. Dresselhaus, G. Chen and Z. Ren, “Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy,” Appl. Phys. Lett., vol. 93, no. 19, 2008,
[23]G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R. W. Gould, D. C. Cuff, M. Y. Tang, M. S. Dresselhaus, G. Chen and Z. Ren, “Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys.,” Nano Lett., vol. 8, no. 12, pp. 4670-4674, 2008.
[24]P. F. P. Poudeu, J. D’Angelo, A. D. Downey, J. L. Short, T. P. Hogan and M. G. Kanatzidis, “High Thermoelectric Figure of Merit and Nanostructuring in Bulk p-type Na1-xPbmSbyTem+2,” Angew. Chem., Int. Ed., vol. 45, pp. 1-5, 2006.
[25]J. Androulakis, C. H. Lin, H. J. Kong, C. Uher, C. I. Wu, T. Hogan, B. A. Cook, T. Caillat, K. M. Paraskevopoulos and M. G. Kanatzidis, “Spinodal Decomposition and Nucleation and Growth as a Means to Bulk Nanostructured Thermoelectrics:  Enhanced Performance in Pb1-xSnxTe−PbS,” J. Am. Chem. Soc., vol. 31, no. 129, pp. 9780-9788, 2007.
[26]J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka and G. J. Snyder, “Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States,” Science, vol. 321, no. 5888, pp. 554-557, 2008.
[27]J. Sootsman, H. Kong, C. Uher, J. D’Angelo, C. I. Wu, T. Hogan,T. Caillat and M. K. Angew, “Large Enhancements in the Thermoelectric Power Factor of Bulk PbTe at High Temperature by Synergistic Nanostructuring,” Chem. Int. Ed., vol. 120, no. 45, pp. 8746-8750, 2008.
[28]Z. G. Chen, G. Han, L. Yang, L. Cheng, and J. Zou, “Nanostructured thermoelectric materials: Current research and future challenge,” Prog. Nat. Sci-mater., vol. 22, pp. 535-549, 2012.
[29]K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, and M. G. Kanatzidis, “Cubic AgPbSbTe: Bulk Thermoelectric Materials with High Figure of Merit,” Science, vol. 303, no. 5959, pp. 818-821, 2004.
[30]C. B. Vining, “An inconvenient truth about thermoelectrics,” Nature Materials, vol. 8, pp. 83-85, 2009.
[31]S. K. Chen, “Development of 3D Micorthermoelectric Cooler,” Department of Mechanical Engineering College of Engineering National Taiwan University, 2015.
[32]Y. Cai, D. Liu, F. Y. Zhao, and J. F. Tang, “Performance analysis and assessment of thermoelectric micro cooler for electronic devices,” Energ. Convers. Manage., vol. 124, pp. 203-211, 2016.
[33]H. P. Ni, “Investigation and Implementation of Measurement Method about Figure of Merit ZT,” Department of Mechanical Engineering College of Engineering National Taiwan University, 2015.
[34]F. M. Smits, "Measurements of Sheet Resistivity with the Four-Point Probe," Bell Syst. Tech. J. Bstj., vol. 37, no. 3, pp. 711-718, 1958.
[35]K. V. Selvan, and M. S. M. Ali, “Micro-scale energy harvesting devices: Review of methodological performances in the last decade,” Adv. Mater. Res. Switz., vol. 54, pp. 1035-1047, 2016.
[36]J. García, N. Pérez, M. Mohn, T. Sieger, H. Schlörb, H. Reith, G. Schierning, and K. Nielsch, “Fabrication of a Micro-Thermoelectric Cooler for Room Temperature Applications by Template Assisted Electrodeposition,” THERMINIC, 2016 22nd International Workshop on. IEEE, 2016, pp. 14-18.
[37]X. Hong, Introduction to semiconductor manufacturing technology; Prentice Hall: Upper Saddle River, 2001.
[38]L. W. Silva, and M. Kaviany, “Fabrication and Measured Performance of a
First-Generation Microthermoelectric Cooler,” J. Microelectromech. S., vol. 14, no. 5, pp. 1110-1117, 2005.
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔