跳到主要內容

臺灣博碩士論文加值系統

(44.200.27.215) 您好!臺灣時間:2024/04/24 16:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉耿豪
研究生(外文):Keng-Hao Liu
論文名稱:遠端遙控車輛之人機協同巡航控制策略
論文名稱(外文):Human-Machine Collaborative Cruise Control Strategy for Tele-Operated Vehicle
指導教授:李綱李綱引用關係
指導教授(外文):Kang Li
口試日期:2017-06-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:98
中文關鍵詞:適應性巡航控制遠端遙控車輛縱向控制人機協同控制滑動模式控制
外文關鍵詞:Adaptive Cruise ControlTele-Operated VehicleLongitudinal ControlHuman-Machine Collaborative ControlSliding Mode Control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:236
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要針對車輛遠端遙控駕駛之縱向運動控制進行研究,以期能克服通訊延遲對於遠端操作者在控制所造成的不良影響。本論文以車輛上的適應性巡航控制系統作為基礎,並將遠端駕駛者之控制命令納入系統迴路中,以此發展出一套人機協同的控制架構。此外,論文中以滑動模式控制之方法設計適應性巡航控制器,並分析其閉路穩定性以及串列穩定性。模擬結果則顯示本論文所提出之控制方法可應用於中低速多車跟隨、起步煞停,以及遠端遙控情境。
This research aims at improving longitudinal control of tele-operated vehicle under severe communication delay, which often causes remote operator to make wrong decision. Inspired from the adaptive cruise control (ACC) system equipped on commercial vehicles, a new cooperative control architecture in which the remote drivers’ command is involved is proposed. In additional, the ACC system is implemented using sliding mode control method and the closed-loop stability and string stability are also investigated. Simulation results show that the proposed controller performs well in many scenarios, including car following, stop-and-go and tele-operated driving.
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 XII
符號表 XIII
1 第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 4
1.3 研究貢獻 8
2 第二章 系統架構與模型 9
2.1 系統架構 9
2.2 車輛動態模型 13
2.2.1 理想車輛模型 13
2.2.2 CarSim車輛模型 16
2.3 巡航控制系統設計 20
2.3.1 油門控制器設計 21
2.3.2 煞車控制器設計 21
2.3.3 油門煞車切換規則 22
2.3.4 巡航控制器模擬 24
3 第三章 車輛控制單元設計 32
3.1 車距維持控制器設計 32
3.1.1 跟車策略 33
3.1.2 控制法則 34
3.1.3 滑動模式控制設計 35
3.2 控制器分析與參數選用 38
3.2.1 閉迴路穩定性分析 38
3.2.2 串列穩定性分析 39
3.2.3 參數選用 42
3.2.4 控制器形式比較 47
3.3 控制命令決策模組設計 55
3.3.1 車速追隨 56
3.3.2 車距維持觸發與控制命令切換 56
4 第四章 模擬結果與分析 58
4.1 多車跟隨情境 58
4.2 控制模式切換與起步煞停情境 77
4.3 遠端遙控縱向運動控制 84
5 第五章 結論與未來工作建議 91
5.1 結論 91
5.2 未來工作建議 93
參考文獻 94
[1]R. R. Murphy, K. L. Dreger, S. Newsome, J. Rodocker, E. Steimle, T. Kimura, et al., "Use of remotely operated marine vehicles at Minamisanriku and Rikuzentakata Japan for disaster recovery," in 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics, 2011, pp. 19-25.
[2]R. R. Murphy, "Navigational and mission usability in rescue robots," 日本ロボット学会誌, vol. 28, pp. 142-146, 2010.
[3]J. Larsson, M. Broxvall, and A. Saffiotti, "An evaluation of local autonomy applied to teleoperated vehicles in underground mines," in Robotics and Automation (ICRA), 2010 IEEE International Conference on, 2010, pp. 1745-1752.
[4]T. M. Lam, H. W. Boschloo, M. Mulder, and M. M. Van Paassen, "Artificial force field for haptic feedback in UAV teleoperation," IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, vol. 39, pp. 1316-1330, 2009.
[5]R. Rayman, S. Primak, R. Patel, M. Moallem, R. Morady, M. Tavakoli, et al., "Effects of latency on telesurgery: an experimental study," in International Conference on Medical Image Computing and Computer-Assisted Intervention, 2005, pp. 57-64.
[6]V. J. Lumelsky and E. Cheung, "Real-time collision avoidance in teleoperated whole-sensitive robot arm manipulators," IEEE Transactions on Systems, Man, and Cybernetics, vol. 23, pp. 194-203, 1993.
[7]P. K. Artemiadis and K. J. Kyriakopoulos, "EMG-based teleoperation of a robot arm in planar catching movements using ARMAX model and trajectory monitoring techniques," in Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., 2006, pp. 3244-3249.
[8]J. P. Luck, P. L. McDermott, L. Allender, and D. C. Russell, "An investigation of real world control of robotic assets under communication latency," in Proceedings of the 1st ACM SIGCHI/SIGART conference on Human-robot interaction, 2006, pp. 202-209.
[9]J. Davis, C. Smyth, and K. McDowell, "The effects of time lag on driving performance and a possible mitigation," IEEE Transactions on Robotics, vol. 26, pp. 590-593, 2010.
[10]J. Y. Chen, E. C. Haas, and M. J. Barnes, "Human performance issues and user interface design for teleoperated robots," IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 37, pp. 1231-1245, 2007.
[11]J. S. Kay and C. E. Thorpe, "Operator interface design issues in a low-bandwidth and high-latency vehicle teleoperation system," SAE Technical Paper 0148-7191, 1995.
[12]A. Kelly, N. Chan, H. Herman, D. Huber, R. Meyers, P. Rander, et al., "Real-time photorealistic virtualized reality interface for remote mobile robot control," The International Journal of Robotics Research, vol. 30, pp. 384-404, 2011.
[13]T. Fong, C. Thorpe, and C. Baur, "Advanced interfaces for vehicle teleoperation: Collaborative control, sensor fusion displays, and remote driving tools," Autonomous Robots, vol. 11, pp. 77-85, 2001.
[14]K. Zhang, X. R. Li, and Y. Zhu, "Optimal update with out-of-sequence measurements," IEEE Transactions on Signal Processing, vol. 53, pp. 1992-2004, 2005.
[15]D. Lee, O. Martinez-Palafox, and M. W. Spong, "Bilateral teleoperation of a wheeled mobile robot over delayed communication network," in Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., 2006, pp. 3298-3303.
[16]Y.-J. Pan, C. Canudas-de-Wit, and O. Sename, "A new predictive approach for bilateral teleoperation with applications to drive-by-wire systems," IEEE Transactions on Robotics, vol. 22, pp. 1146-1162, 2006.
[17]R. Liu, K. Bekris, A. Elgammal, V. Ganapathy, M. Gerla, L. Iftode, et al., "Remote Driving: A Ready-to-go Approach to Autonomous Car?-Opportunities and Challenges."
[18]S. Gnatzig, F. Chucholowski, T. Tang, and M. Lienkamp, "A System Design for Teleoperated Road Vehicles," in ICINCO (2), 2013, pp. 231-238.
[19]J. H. Park, Y. J. Son, and J. H. Kim, "Design of Advanced Tele-operated Control System for Unmanned Vehicle," in Proceeding of ICCAS, 2005.
[20]M. Desai and H. A. Yanco, "Blending human and robot inputs for sliding scale autonomy," in ROMAN 2005. IEEE International Workshop on Robot and Human Interactive Communication, 2005., 2005, pp. 537-542.
[21]S. J. Anderson, S. C. Peters, T. E. Pilutti, and K. Iagnemma, "An optimal-control-based framework for trajectory planning, threat assessment, and semi-autonomous control of passenger vehicles in hazard avoidance scenarios," International Journal of Vehicle Autonomous Systems, vol. 8, pp. 190-216, 2010.
[22]S. J. Anderson, S. C. Peters, K. Iagnemma, and J. Overholt, "Semi-autonomous stability control and hazard avoidance for manned and unmanned ground vehicles," DTIC Document2010.
[23]S. J. Anderson, S. B. Karumanchi, and K. Iagnemma, "Constraint-based planning and control for safe, semi-autonomous operation of vehicles," in Intelligent Vehicles Symposium (IV), 2012 IEEE, 2012, pp. 383-388.
[24]P. Ioannou and Z. Xu, "THROTTLE AND BRAKE CONTROL SYSTEMS FOR AUTOMATIC VEHICLE FOLLOWING∗," Journal of Intelligent Transportation Systems, vol. 1, pp. 345-377, 1994.
[25]L. Xiao and F. Gao, "A comprehensive review of the development of adaptive cruise control systems," Vehicle System Dynamics, vol. 48, pp. 1167-1192, 2010.
[26]P. Shakouri, "Designing of the adaptive cruise control system-switching controller," Kingston University, 2012.
[27]J. Zhou and H. Peng, "Range policy of adaptive cruise control vehicles for improved flow stability and string stability," IEEE Transactions on intelligent transportation systems, vol. 6, pp. 229-237, 2005.
[28]J. Wang and R. Rajamani, "Should adaptive cruise-control systems be designed to maintain a constant time gap between vehicles?," IEEE Transactions on Vehicular Technology, vol. 53, pp. 1480-1490, 2004.
[29]P. A. Ioannou and C.-C. Chien, "Autonomous intelligent cruise control," IEEE Transactions on Vehicular technology, vol. 42, pp. 657-672, 1993.
[30]P. Ioannou, Z. Xu, S. Eckert, D. Clemons, and T. Sieja, "Intelligent cruise control: theory and experiment," in Decision and Control, 1993., Proceedings of the 32nd IEEE Conference on, 1993, pp. 1885-1890.
[31]X.-Y. Lu, J. K. Hedrick, and M. Drew, "ACC/CACC-control design, stability and robust performance," in Proceedings of the 2002 American Control Conference (IEEE Cat. No. CH37301), 2002, pp. 4327-4332.
[32]L.-h. Luo, H. Liu, P. Li, and H. Wang, "Model predictive control for adaptive cruise control with multi-objectives: comfort, fuel-economy, safety and car-following," Journal of Zhejiang University SCIENCE A, vol. 11, pp. 191-201, 2010.
[33]J. E. Naranjo, C. González, R. García, and T. De Pedro, "Cooperative throttle and brake fuzzy control for ACC+ Stop&Go maneuvers," IEEE Transactions on Vehicular Technology, vol. 56, pp. 1623-1630, 2007.
[34]D. Swaroop and J. Hedrick, "String stability of interconnected systems," IEEE transactions on automatic control, vol. 41, pp. 349-357, 1996.
[35]J. Ploeg, B. T. Scheepers, E. van Nunen, N. van de Wouw, and H. Nijmeijer, "Design and experimental evaluation of cooperative adaptive cruise control," in 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), 2011, pp. 260-265.
[36]J. Hedrick, "Constant Spacing Strategies for Platooning in Automated Highway Systems," 1999.
[37]E. Shaw and J. K. Hedrick, "String stability analysis for heterogeneous vehicle strings," in American Control Conference, 2007. ACC''07, 2007, pp. 3118-3125.
[38]D. Swaroop and K. Rajagopal, "A review of constant time headway policy for automatic vehicle following," in Intelligent Transportation Systems, 2001. Proceedings. 2001 IEEE, 2001, pp. 65-69.
[39]F. Bu, H.-S. Tan, and J. Huang, "Design and field testing of a cooperative adaptive cruise control system," in American Control Conference (ACC), 2010, pp. 4616-4621.
[40]V. Milanés, S. E. Shladover, J. Spring, C. Nowakowski, H. Kawazoe, and M. Nakamura, "Cooperative adaptive cruise control in real traffic situations," IEEE Transactions on Intelligent Transportation Systems, vol. 15, pp. 296-305, 2014.
[41]G. J. Naus, R. P. Vugts, J. Ploeg, M. J. van de Molengraft, and M. Steinbuch, "String-stable CACC design and experimental validation: A frequency-domain approach," IEEE Transactions on Vehicular Technology, vol. 59, pp. 4268-4279, 2010.
[42]M. Persson, "Stop 85 GO Controller for Adaptive Cruise Control," Language, vol. 280, p. 5316, 1998.
[43]J. Villagrá, V. Milanés, J. P. Rastelli, and C. González, "Model-free control techniques for Stop & Go systems," in 2010 13th International IEEE Annual Conference on Intelligent Transportation Systems, 2010.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top