跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/04 23:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭柏均
研究生(外文):Po-Chun Kuo
論文名稱:以陽極氧化鋁及奈米球微影製程作仿生黏著結構
論文名稱(外文):Fabrication of Biomimetic Dry-Adhesion Structures Using Anodic Aluminum Oxide and Nanosphere Lithography
指導教授:楊申語楊申語引用關係
口試日期:2017-07-11
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:117
中文關鍵詞:無膠黏著陽極氧化鋁奈米球微影氣體輔助熱壓
外文關鍵詞:Dry adhesiveAAONanosphere lithographyGas-assisted hot embossing
相關次數:
  • 被引用被引用:1
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
仿生黏著結構能夠應用於醫藥、民生、工業用途上,其具有多樣之未來發展可能性,目前大多使用生長奈米碳管或是孔洞模具進行結構複製得到所需的結構。本研究開發陽極氧化鋁模具及奈米球微影製程,來製作不同種類模具,應用氣輔熱壓複製出仿生黏著結構。
第一部分製作陽極氧化鋁孔洞模具,透過改變陽極氧化鋁過程中的電壓參數,進行兩次陽極氧化鋁製程,第一次及第二次的陽極處理皆以磷酸作為電解液,改變電壓參數得到不同孔洞間距的AAO模具。
第二部份透過自行架設之拉伸奈米球機台,以浸潤塗佈方式,製作規律排列單層500 nm及800 nm奈米球結構,藉改變基板材料為玻璃基板、PMMA基板、微米點狀陣列結構基板,能夠配合奈米球微影製程的蝕刻參數製作不同的結構,最終能夠得到奈米吸盤結構、柱狀結構及微奈米複合結構的模具。
接著以製作出來的四種模具為模進行結構複製,以PDMS為材料透過澆鑄方式及氣輔熱壓方式得到成品。最後,對複製成品進行黏著力及接觸角量測,以驗證試片對於PDMS之黏著力增強效果及抗汙效果。使用拉伸角度45˚、速度6 mm/s的自組裝800 nm奈米球規律結構經RIE 390秒後所得柱狀結構能使PDMS接觸角達135.2°,平均黏著力達4.0 N/cm2。此論文證實奈米球微影製程以快速、簡易、低成本方式製作仿生黏著結構的潛力。
Structure of biomimetic dry-adhesion has a variety of application. Many researchers used AAO, e-beam lithography, porous polymer and carbon nanotube to fabricate the microstructure for dry-adhesion. In this study, two approaches, namely anodic aluminum oxide process and nanosphere lithography process, were developed to fabricate the mold for microstructure.
First, through two-step anodization process, AAO nanostructure were obtained using 0.1 M phosphoric acid as electrolyte. AAO templates with different pitches and pore diameter can be fabricated by changing the anodization voltage and the widening time.
Second, nanosphere lithography was employed. Monolayer PS spheres template were assembled orderly on different substrate.Using the mechanism with step motor, it could stabilize the drag force in the dip coating process. By controlling tilt angle and lift speed, orderliness of self-assembled nanospheres can be improved. Reactive ion etching was then used to create structure of high aspect ratio by adjusting the etching time, micro-structure of different shaped can be fabricated. Then a Ni mold with inversed nanostructure were replicated by the electroforming process. Finally, using casting method and gas-assisted hot embossing method, the PDMS with high aspect ratio structure were fabricated.
The results showed that, using nanosphere lithography structure with 1146 nm can enhance the adhesion force to 4.05 N/cm2 and the contact angle on the PDMS with nanostructure is 135.2°. This columnar structure can effectively enhance the adhesion ability and hydrophobicity of PDMS, demonstrating the potential of using the nanosphere lithography process for fast, simple and low cost to frabricate micro structure for adhesion and hydrophobicity.
致謝 I
摘要 II
Abstract III
目錄 V
圖目錄 VIII
表目錄 XIII
第一章 導論 1
1.1 前言 1
1.2 仿生壁虎腳結構 1
1.3 仿生黏著結構製作 3
1.4 陽極陽化鋁孔洞模具製備 4
1.5 奈米球自組裝成型技術 4
1.6 研究動機與目標 6
1.7 論文內容與架構 7
第二章 文獻回顧 8
2.1 仿生壁虎腳結構 8
2.1.1 黏附機制 8
2.1.2 黏附系統分析 9
2.1.3 設計參數分析 12
2.1.4 仿生壁虎腳結構製作 13
2.2 陽極氧化鋁相關文獻 20
2.3 奈米球自組裝法 24
2.3.1 自然沉積法 24
2.3.2 對流塗佈自組裝法 25
2.3.3 旋轉塗佈法 26
2.3.4 垂直堆積法 28
2.3.5 氣液介面組裝法 29
2.4 奈米球微影技術 31
2.5 壓印成型 33
2.6 整體回顧與研究創新 42
第三章 實驗設置與實驗方法 43
3.1 研究架構 43
3.2 AAO實驗流程 44
3.3 奈米球自組裝微影製程 47
3.3.1 基板及原料前置作業 47
3.3.2 浸潤塗佈自組裝奈米球結構 48
3.3.3 奈米球微影製程 49
3.4 氣體輔助熱壓成型設備 50
3.4.1 氣體壓印設備 50
3.4.2 壓印製程步驟 51
3.5 相關量測設備 53
3.5.1 場發射電子顯微鏡(FE-SEM) 53
3.5.2 接觸角量測儀 54
3.5.3 黏著力測試機構 54
第四章 結構模具製作 57
4.1 Two-step陽極氧化鋁模具製作 57
4.1.1 試片準備 57
4.1.2 陽極氧化鋁製程 58
4.1.3 AAO模具成果 60
4.2 奈米球結構成型 63
4.2.1 奈米球溶液配置 64
4.2.2 奈米球拉伸機台參數探討 66
4.3 奈米球結構微影製程及模具製作 70
4.3.1 奈米球微影蝕刻 70
4.3.2 奈米球結構模具製作 74
4.3.3 複合結構模具製作 76
4.4 本章結論 79
第五章 結構複製與應用 81
5.1 模具結構複製 81
5.1.1 PDMS翻模 81
5.1.2 氣體輔助PDMS翻模 87
5.2 疏水性應用 94
5.2.1 表面自由能 94
5.2.2 接觸角量測 94
5.3 黏著力測試 101
5.4 本章結論 107
第六章 結論與未來展望 109
6.1 結論 109
6.2 未來展望 110
參考文獻 111
[1] Arzt E, Gorb S and Spolenak R 2003 From micro to nano contacts in biological attachment devices Proc. Natl. Acad. Sci. 100 10603–10606
[2] Autumn K and Peattie A M 2002 Mechanisms of adhesion in geckos Integr. Comp. Biol. 42 1081–1090
[3] Whitesides G M and Grzybowski B 2002 Self-Assembly at All Scales Science 295 2418–21
[4] Nuzzo R G and Allara D L 1983 Adsorption of Bifunctional Organic Disulfides on Gold Surfaces J. Am. Chem. Soc. 105 4481–3
[5] Denkov N D, Velev O D, Kralchevsky P A, Ivanov I B, Yoshimura H and Nagayama K 1992 Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrate Langmuir 8 3183–90
[6] Autumn K, Liang Y A, Hsieh S T, Zesch W, Chan W P, Kenny T W, Fearing R and Full R J 2000 Adhesive force of a single gecko foot-hair Nature 405 681–5
[7] Autumn K, Sitti M, Liang Y A, Peattie A M, Hansen W R, Sponberg S, Kenny T W, Fearing R, Israelachvili J N and Full R J 2002 Evidence for van der Waals adhesion in gecko setae Proc. Natl. Acad. Sci. 99 12252–12256
[8] Shah G J and Sitti M 2004 Modeling and Design of Biomimetic Adhesives Inspired by Gecko Foot-Hairs 2004 IEEE International Conference on Robotics and Biomimetics 2004 IEEE International Conference on Robotics and Biomimetics pp 873–8
[9] Huber G, Mantz H, Spolenak R, Mecke K, Jacobs K, Gorb S N and Arzt E 2005 Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements Proc. Natl. Acad. Sci. U. S. A. 102 16293–16296
[10] Kim T W and Bhushan B 2008 The adhesion model considering capillarity for gecko attachment system J. R. Soc. Interface 5 319–27
[11] Johnson K L, Kendall K and Roberts A D 1971 Surface energy and the contact of elastic solids Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences vol 324 (The Royal Society) pp 301–313
[12] Lee J, Fearing R S and Komvopoulos K 2008 Directional adhesion of gecko-inspired angled microfiber arrays Appl. Phys. Lett. 93 191910
[13] Autumn K 2006 Effective elastic modulus of isolated gecko setal arrays J. Exp. Biol. 209 3558–68
[14] Kim T, Jeong H E, Suh K Y and Lee H H 2009 Stooped Nanohairs: Geometry-Controllable, Unidirectional, Reversible, and Robust Gecko-like Dry Adhesive Adv. Mater. 21 2276–81
[15] Jeong H E and Suh K Y 2009 Nanohairs and nanotubes: Efficient structural elements for gecko-inspired artificial dry adhesives Nano Today 4 335–46
[16] Hu S, Xia Z and Dai L 2013 Advanced gecko-foot-mimetic dry adhesives based on carbon nanotubes Nanoscale 5 475–86
[17] Sahay R, Baji A, Parveen H and Ranganath A S 2017 Dry-adhesives based on hierarchical poly(methyl methacrylate) electrospun fibers Appl. Phys. A 123
[18] Wang Y, Tian H, Shao J, Sameoto D, Li X, Wang L, Hu H, Ding Y and Lu B 2016 Switchable Dry Adhesion with Step-like Micropillars and Controllable Interfacial Contact ACS Appl. Mater. Interfaces 8 10029–37
[19] Ge L, Sethi S, Ci L, Ajayan P M and Dhinojwala A 2007 Carbon nanotube-based synthetic gecko tapes Proc. Natl. Acad. Sci. 104 10792–10795
[20] Qu L, Dai L, Stone M, Xia Z and Wang Z L 2008 Carbon Nanotube Arrays with Strong Shear Binding-On and Easy Normal Lifting-Off Science 322 238–42
[21] Geim A K, Dubonos S V, Grigorieva I V, Novoselov K S, Zhukov A A and Shapoval S Y 2003 Microfabricated adhesive mimicking gecko foot-hair Nat. Mater. 2 461–3
[22] Choi M K, Yoon H, Lee K and Shin K 2011 Simple Fabrication of Asymmetric High-Aspect-Ratio Polymer Nanopillars by Reusable AAO Templates Langmuir 27 2132–7
[23] Jeong H E, Lee J-K, Kim H N, Moon S H and Suh K Y 2009 A nontransferring dry adhesive with hierarchical polymer nanohairs Proc. Natl. Acad. Sci. U. S. A. 106 5639–44
[24] Thompson G E 1997 Porous anodic alumina: fabrication, characterization and applications Thin Solid Films 67 192–201
[25] Jessensky O, Müller F and Gösele U 1998 Self-organized formation of hexagonal pore arrays in anodic alumina Appl. Phys. Lett. 72 1173–5
[26] Li A P, Müller F, Birner A, Nielsch K and Gösele U 1998 Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina J. Appl. Phys. 84 6023–6
[27] Lee W, Ji R, Gösele U and Nielsch K 2006 Fast fabrication of long-range ordered porous alumina membranes by hard anodization Nat. Mater. 5 741–7
[28] Masuda H and Fukuda K 1995 Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina Science 268 1466–8
[29] Zaraska L, Jaskuła M and Sulka G D 2016 Porous anodic alumina layers with modulated pore diameters formed by sequential anodizing in different electrolytes Mater. Lett. 171 315–8
[30] Yasui K, Nishio K, Nunokawa H and Masuda H 2005 Ideally ordered anodic porous alumina with Sub-50 nm hole intervals based on imprinting using metal molds J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 23 L9
[31] Zhou Q, Dong P, Liu L and Cheng B 2005 Study on the sedimentation self-assembly of colloidal SiO2 particles under gravitational field Colloids Surf. Physicochem. Eng. Asp. 253 169–74
[32] Park S H, Qin D and Xia Y 1998 Crystallization of Mesoscale Particles over Large Areas Adv. Mater. 10 1028–32
[33] Prevo B G and Velev O D 2004 Controlled, Rapid Deposition of Structured Coatings from Micro- and Nanoparticle Suspensions Langmuir 20 2099–107
[34] Flack W W, Soong D S, Bell A T and Hess D W 1984 A mathematical model for spin coating of polymer resists J. Appl. Phys. 56 1199–206
[35] Skrobis K J, Denton D D and Skrobis A V 1990 Effect of early solvent evaporation on the mechanism of the spin-coating of polymeric solutions Polym. Eng. Sci. 30 193–6
[36] Meyerhofer D 1978 Characteristics of resist films produced by spinning J. Appl. Phys. 49 3993–7
[37] Wang D and Möhwald H 2004 Rapid Fabrication of Binary Colloidal Crystals by Stepwise Spin-Coating Adv. Mater. 16 244–7
[38] Xia D and Brueck S R J 2004 A Facile Approach to Directed Assembly of Patterns of Nanoparticles Using Interference Lithography and Spin Coating Nano Lett. 4 1295–9
[39] Jiang P and McFarland M J 2004 Large-Scale Fabrication of Wafer-Size Colloidal Crystals, Macroporous Polymers and Nanocomposites by Spin-Coating J. Am. Chem. Soc. 126 13778–86
[40] Dimitrov A S and Nagayama K 1996 Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces Langmuir 12 1303–1311
[41] Chen S 2001 Langmuir−Blodgett Fabrication of Two-Dimensional Robust Cross-Linked Nanoparticle Assemblies Langmuir 17 2878–84
[42] Rybczynski J, Ebels U and Giersig M 2003 Large-scale, 2D arrays of magnetic nanoparticles Colloids Surf. Physicochem. Eng. Asp. 219 1–6
[43] Nagao D, Kameyama R, Matsumoto H, Kobayashi Y and Konno M 2008 Single- and multi-layered patterns of polystyrene and silica particles assembled with a simple dip-coating Colloids Surf. Physicochem. Eng. Asp. 317 722–9
[44] Wu Y, Zhang C, Yuan Y, Wang Z, Shao W, Wang H and Xu X 2013 Fabrication of Wafer-Size Monolayer Close-Packed Colloidal Crystals via Slope Self-Assembly and Thermal Treatment Langmuir 29 14017–23
[45] Deckman H W and Dunsmuir J H 1982 Natural lithography Appl. Phys. Lett. 41 377–9
[46] Kim B-J, Jung H, Kim H-Y, Bang J and Kim J 2009 Fabrication of GaN nanorods by inductively coupled plasma etching via SiO2 nanosphere lithography Thin Solid Films 517 3859–61
[47] Li Y, Cai W, Cao B, Duan G, Sun F, Li C and Jia L 2006 Two-dimensional hierarchical porous silica film and its tunable superhydrophobicity Nanotechnology 17 238–43
[48] Hulteen J C and Van Duyne R P 1995 Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces J. Vac. Sci. Technol. Vac. Surf. Films 13 1553–1558
[49] Chung W W, Yoo G Y, Park H K, Kim W and Do Y R 2015 Fabrication of an InGaN/GaN-based LED nanorod array by nanosphere lithography and its optical properties 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO) 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO) pp 216–9
[50] Zhang X, Yonzon C R and Van Duyne R P 2006 Nanosphere lithography fabricated plasmonic materials and their applications J. Mater. Res. 21 1083–92
[51] Zhang C, Guney D O and Pearce J M 2016 Plasmonic enhancement of amorphous silicon solar photovoltaic cells with hexagonal silver arrays made with nanosphere lithography Mater. Res. Express 3 105034
[52] Su Y-K, Chen J-J, Lin C-L, Chen S-M, Li W-L and Kao C-C 2008 GaN-based light-emitting diodes grown on photonic crystal-patterned sapphire substrates by nanosphere lithography Jpn. J. Appl. Phys. 47 6706
[53] Ji L, Chang Y-F, Fowler B, Chen Y-C, Tsai T-M, Chang K-C, Chen M-C, Chang T-C, Sze S M, Yu E T and Lee J C 2014 Integrated One Diode–One Resistor Architecture in Nanopillar SiO x Resistive Switching Memory by Nanosphere Lithography Nano Lett. 14 813–8
[54] Michel B, Bernard A, Bietsch A, Delamarche E, Geissler M, Juncker D, Kind H, Renault J P, Rothuizen H, Schmid H, Schmidt-Winkel P, Stutz R and Wolf H 2001 Printing meets lithography: Soft approaches to high-resolution patterning IBM J. Res. Dev. 45 697–719
[55] Kumar A and Whitesides G M 1993 Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol “‘ink’” followed by chemical etching Appl. Phys. Lett. 63 2002–4
[56] Loo Y-L, Willett R L, Baldwin K W and Rogers J A 2002 Interfacial Chemistries for Nanoscale Transfer Printing J. Am. Chem. Soc. 124 7654–5
[57] Rogers J A, Bao Z and Raju V R 1998 Nonphotolithographic fabrication of organic transistors with micron feature sizes Appl. Phys. Lett. 72 2716–8
[58] Bartolini R, Hannan W, Karlsons D and Lurie M 1970 HOLOGRAPHY Embossed Hologram Motion Pictures for Television Playback Appl. Opt. 9 2283–2290
[59] Gale M T 1997 Replication techniques for diffractive optical elements Microelectron. Eng. 34 321–339
[60] Becker E W, Ehrfeld W, Hagmann P, Maner A and Münchmeyer D 1986 Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process) Microelectron. Eng. 4 35–56
[61] Zhao Y and Cui T 2003 Fabrication of high-aspect-ratio polymer-based electrostatic comb drives using the hot embossing technique J. Micromechanics Microengineering 13 430
[62] Chou S Y, Krauss P R and Renstrom P J 1996 Nanoimprint lithography J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 14 4129–4133
[63] Chou S Y, Keimel C and Gu J 2002 Ultrafast and direct imprint of nanostructures in silicon Nature 417 835–837
[64] Chang J-H and Yang S-Y 2003 Gas pressurized hot embossing for transcription of micro-features Microsyst. Technol. 10 76–80
[65] Chang J-H and Yang S-Y 2005 Development of fluid-based heating and pressing systems for micro hot embossing Microsyst. Technol. 11 396–403
[66] Chang J-H, Cheng F-S, Chao C-C, Weng Y-C, Yang S-Y and Wang L A 2005 Direct imprinting using soft mold and gas pressure for large area and curved surfaces J. Vac. Sci. Technol. Vac. Surf. Films 23 1687–90
[67] Cheng F-S, Yang S-Y, Nian S-C and Wang L A 2006 Soft mold and gasbag pressure mechanism for patterning submicron patterns onto a large concave substrate J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 24 1724
[68] Cheng F S and Nian S C 2011 Soft UV-Imprinting Using Gasbag Pressure Mechanism for Side-Direction and Non-Planar Substrate Adv. Mater. Res. 189–193 4068–72
[69] Gao H, Tan H, Zhang W, Morton K and Chou S Y 2006 Air Cushion Press for Excellent Uniformity, High Yield, and Fast Nanoimprint Across a 100 mm Field Nano Lett. 6 2438–41
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top