(3.238.7.202) 您好!臺灣時間:2021/03/01 22:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡宗岳
研究生(外文):Tsung-Yueh Tsai
論文名稱:氣囊式拋光技術運用於熔融石英玻璃之表面品質研究
論文名稱(外文):The Study of Surface Quality on Fused Silicaafter Bonnet Polishing Technique
指導教授:楊宏智楊宏智引用關係
口試日期:2017-07-07
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:87
中文關鍵詞:精密數控拋光非球面製程氣囊式拋光表面品質表面紋理
外文關鍵詞:Computer-aided polishingAspheric lens manufacturingBonnet polishingSurface qualitySurface texture
相關次數:
  • 被引用被引用:1
  • 點閱點閱:114
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現今拋光技術對於球面鏡面加工製程已趨近成熟,可以達到很高的表面形狀精度,但在光學系統中的使用上球面透鏡仍存在像差問題。為了改善此現象,球面透鏡常以多片鏡面組合,但卻也降低鏡組之對比度且增大了光學系統之體積。非球面鏡片便為因應此現象而生,其局部曲率半徑隨著徑向位置而改變之特性,能有效改善像差問題,但製程上相對困難,無法以固定曲率模具進行研磨拋光,若能利用電腦輔助進行小口徑軟質拋光頭的數控拋光,加工出良好之加工表面,便能有效提升製程效率且大幅提升國內拋光技術,增進產業競爭力。
本論文針對數控拋光應用於非球面鏡面製程之參數配置進行研究,以提供佳化之拋光策略與參數之設定。在過往研究中,發現到小口徑軟質氣囊式拋光頭運用於數控拋光有嚴重中低頻表面紋理之產生並且主導工件之峰谷值(Peak-to-Valley)和方均根值(Root-Mean-Square),且於後段之精加工十分難以被抑制,本論文特別針對此段表面紋理問題進行研究,而藉由實驗與表面分析結果得知,數控拋光之拋光頭偏置量對於加工所產生之紋理並無直接之影響關係;拋光頭轉速與拋光頭進給速率,則為表面紋理產生之關鍵性影響因子。若加工參數之設定未控制於適當之參數範圍內,則會產生嚴重之表面紋理。藉由控制拋光頭加工之路徑間距迴避機台自然震動所產生之定頻紋理之頻率,則可有效改善表面品質,並抑制紋理之產生。本研究藉由所歸納出數據與參數設定之分析,針對拋光製程中表面輪廓修整階段所提之拋光頭進給速率建議,與移除次表面破壞層最後拋光階段之定材料移除率之加工參數組,經過分析比較與實驗驗證,確實能有效提升拋光後表面品質並明顯抑制數控拋光加工中所產生之中低頻表面紋理,進而降低拋光過程所需時間及人力成本,並大幅提高拋光加工之工件品質。
Polishing techniques on spherical lenses have reached a certain level recently.
However, issues such as chromatic aberration and optical distortion are still left unsolved when it comes to application. In order to solve the problems, spherical lenses are often used as a combination of lenses. Unfortunately, it reduces the contrast of the image through the lenses, and it increases the volume of the optical system. Aspherical lenses were then born in response. They overcome the aberration problem by having different local curvatures which are based on the radial distances. Nonetheless, it increases the difficulties of the manufacturing procedures since aspherical lenses cannot be polished or grinded with traditional polishing techniques. Only if the computer-aided bonnet polishing on a fine quality surface fabrication is available, the domestic polishing techniques could be improved substantially while enhancing the industrial competitiveness
The research focuses on the parameters of the computer-aided polishing that are applied on the manufacturing process of an aspherical lens, in order to optimize the parameters and the polishing strategies. In the past studies, it was found that obvious low-to-mid spatial frequency errors occurred during the polishing process, which increased the values of the surface’s Peak-to-Valley values and the Root-Mean-Square values, and it is hard to be eliminated. This study is mainly concerned with the surface texture problems formed during the polishing process. According to the experiments and the analyzation results, the offsets of the tool have no direct effects on the results of the surface textures. The heads'' speed and the tool feed rate are the two main factors, that will worsen the surface quality when they are not under controlled in an appropriate processing range. By determining the track spacing of the pitch, it can resolve the surface texture problem caused by the machine vibration. The optimization of IV parameters and polishing strategies in the study of the aspherical lenses manufacturing are conformed to improve the surface quality and eliminate the low-to-mid spatial frequency errors occurred during the computer-aided polishing processes. Additionally, the cost of the polishing process can be decreased while improving the product quality significantly.
致謝.......................................................................................................................... I
摘要......................................................................................................................... II
Abstract ..................................................................................................................III
目錄......................................................................................................................... V
表目錄................................................................................................................. VIII
圖目錄....................................................................................................................IX
第一章 緒論............................................................................................................1
1.1 研究背景.........................................................................................................1
1.2 研究動機.........................................................................................................2
1.3 研究目的.........................................................................................................3
1.4 研究架構.........................................................................................................6
1.5 論文架構.........................................................................................................8
第二章 文獻回顧....................................................................................................9
2.1 簡介.................................................................................................................9
2.2 拋光製程.........................................................................................................9
2.2.1 拋光概述..............................................................................................9
2.2.2 加工問題............................................................................................12
2.2.3 表面精度與透鏡品質........................................................................13
2.3 拋光加工.......................................................................................................14
2.3.1 拋光頭配置........................................................................................14
2.3.2 拋光加工參數控制............................................................................17
2.3.3 多方向進給.........................................................................................18
2.4 功率譜密度函數...........................................................................................20
2.4.1 功率譜密度函數................................................................................20
2.4.2 空間形貌頻率誤差影響....................................................................21
2.5 小結...............................................................................................................22
第三章 實驗設計與規劃......................................................................................23
3.1 簡介................................................................................................................23
3.2 實驗設備........................................................................................................23
3.2.1 拋光實驗設備....................................................................................23
3.2.2 氣囊式拋光刀具與拋光液................................................................29
3.3 實驗試片製備................................................................................................31
3.3.1 實驗試片材料與實驗設備................................................................31
3.3.2 實驗試片製備加工............................................................................33
3.4 實驗設計.......................................................................................................36
第四章 實驗結果與討論......................................................................................37
4.1 簡介................................................................................................................37
4.2 重複性檢測...................................................................................................40
4.2.1 量測重複性........................................................................................40
4.2.2 實驗重現性........................................................................................41
4.3 拋光參數實驗................................................................................................44
4.3.1 拋光頭偏置實驗.................................................................................44
4.3.2 拋光頭轉速實驗.................................................................................48
4.3.3 路徑間距實驗.....................................................................................53
4.3.4 拋光頭進給實驗.................................................................................59
4.4 定材料移除量實驗.......................................................................................66
4.5 小結................................................................................................................71
第五章 實驗驗證..................................................................................................74
5.1 簡介................................................................................................................74
5.2 驗證實驗規劃...............................................................................................74
5.3 驗證實驗結果與討論....................................................................................75
5.4 小結................................................................................................................79
第六章 結論與未來展望......................................................................................80
6.1 結論................................................................................................................80
6.2 未來展望........................................................................................................82
參考文獻................................................................................................................84
[1] 光電科技工業協進會 2015 年光電大未來記者會新聞稿
[2] Andrew R. Barron, “Formation of Silicon and Gallium Arsenide Wafers” OpenStax-CNX, 2012.
[3] Jian Wang, Yaguo Li, Jinghua Han, Qiao Xu and Yinbiao Guo, “Evaluating subsurface damage in optical glasses” Journal of the European Optical Society–Rapid Publications 6, 11001 , 2011.
[4] 黃弘毅, “矽晶圓超精密輪磨之研究”, 國立台灣大學機械工程學研究所碩士
論文, 2003.
[5] 余宗儒、郭慶祥、何承舫、許巍耀, “反射式光學系統之非球面鏡拋光製程研究”, 中國機械工程學會第二十八屆全國學術研討會論文集, 2011.
[6] D.D. Walker, A.T.H. Beaucamp, D. Brooks, R. Freeman, A. King , G. McCavan. R, Morton , D. Riley , J. Simms, “Novel CNC polishing process for control of form and texture on aspheric surfaces”, Proc. SPIE 4767, Current Developments in Lens Design and Optical Engineering III, pp99, 2002.
[7] http://www.dcfever.com/news/viewglossary.php?glossary_id=45
[8] Edmund Optics Inc, “All About Aspheric Lenses”, <https://www.edmundoptics.com/resources/application-notes/optics/all-about-aspheric-lenses/>
[9] 郭慶祥, “航太級大口徑非球面鏡片製作技術”, 國家研究院菁英成果研討會, 2013.
[10] Ye Hui, Yang Wei, Bi Guo, Yang Ping, Guo Yinbiao, “Subsurface Damage Detection and Damage Mechanism Analysis of Chemical-Mechanical Polished Optics”, SPIE 9282, 7th International Symposium on Advanced Optical
Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment, 928203, 2014.
[11] 黃士溥, “The Study of Optimization on Process Parameters of High Accuracy Computerized Numerical Control Polishing”, 國立台灣大學機械工程學研究所碩士論文, 2016.
[12] Jin Lin, Chunjin Wang, Hui Ye, Wei Yang, Yinbiao Guo, “Effect of the tool influence function shape of the semirigid bonnet to the tool path ripple error”, Optical Engineering Volume 54, Issue 11, November 2015.
[13] Q. Luo, S. Ramarajan, S. V. Babu, “Modification of the Preston equation for the chemical mechanical polishing of copper”, Thin Solid Films ,Volume 335, Issues 1–2, 19, pp 160-167, November 1998.
[14] Zhong-Chen Cao, Chi Fai Cheung, Xing Zhao, “ A theoretical and experimental investigation of material removal” Wear, July 2015.
[15] David D. Walker, David Brooks, Andrew King , Richard Freeman, Roger Morton, Gerry McCavana, Sug-Whan Kim, “The ‘Precessions’ tooling for polishing and figuring flat, spherical and aspheric surfaces”, Optics Express, Vol.11, Issue 8, pp. 958-964, 2003.
[16] Rudiger Hentschel, Bernhard Braunecker, Hans J. Tiziani, “Advanced Optics Using Aspherical Elements”, January 2008.
[17] 王偉, 徐敏, 李洪玉, 于國域, “Polishing of large- aperture mirror and analysis of power spectral density”, Infraredand Laser Engineering, Vol.42, No.4, April 2013.
[18] Wei-Jei Peng , Cheng-Fang Ho, Wen-Lung Lin, Zong-Ru Yu, Chien-Yao Huang, Ching-Hsiang Kuo, Wei-Yao Hsu, “Design, tolerance analysis, fabrication, and testing of a 6-in. dual-wavelength transmission sphere for a Fizeau interferometer”, Optical Design And Engineering, Eng. 56(3), 035105, Mar 2017.
[19] Andreas Gebhardt, Matthias Beier , “Workshop: Freeform Metal Optics”, Fraunhofer Institute for Applied Optics and Precision Engineering IOF, April 2015.
[20] Robert A. Jones, “Computer-controlled grinding of optical surfaces”, Applied Optics, Vol.21, Issue 5, pp. 874-877, 1982.
[21] Jin Lin, Chunjin Wang, Hui Ye, Wei Yang, Yinbiao Guo, “Effect of the tool influence function shape of the semirigid bonnet to the tool path ripple error”, Optical Engineering Volume 54, Issue 11, November 2015.
[22] Chunjin Wang, Wei Yang, Zhenzhong Wang, Xu Yang, Zhiji Sun, Bo Zhong, Ri Pan, Ping Yang, Yinbiao Guo, Qiao Xu, “Highly efficient deterministic polishing using a semirigid bonne”, Optical Engineering 53(9), 095102, September 2014.
[23] Chunjin Wang, Wei Yang, Shiwei Ye, Zhenzhong Wang, Bo Zhong, Yinbiao Guo, Qiao Xu, “Optimization of parameters for bonnet polishing based on the minimum residual error method”, Optical Engineering, OE.53.7.075108, July 2014.
[24] Javier Del Hoyo, Dae Wook Kim and James H. Burge, “Super-smooth optical fabrication controlling high spatial frequency surface irregularity”, SPIE 8838,
Optical Manufacturing and Testing X, 88380T, September 2013.
[25] Yuxuan Gong, Scott T. Misture, Peng Gao, Nathan P. Mellott, “Surface Roughness Measurements Using Power Spectrum Density Analysis with Enhanced Spatial Correlation Length”, J. Phys. Chem. C, 120 (39), pp 22358–2236, 2016.
[26] J. DeGroote Nelson, B. Light, D. Savage, B. Wiederhold and M. Mandina, “VIBE™ finishing to remove mid-spatial frequency ripple”, International Optical Design Conference and Optical Fabrication and Testing, 2010.
[27] http://www.universalphotonics.tw/produ15.html
[28] “RHODIA CEROX1663 Material Safety Data Sheet”, RHODIA INC. ELECTRONICS AND CATALYSIS, 2007.
[29] https://www.itrc.narl.org.tw/Bulletin/News/2016.12.16.php
[30] 尤偉偉, 彭小強, 戴一帆, “磁流變拋光液研究”, Optics and Precision Engineering, Vol.12, No.3, June 2014.
[31] 陳逢軍, 尹韶輝, 余劍武, 徐志強, “磁流變拋光整加工技術研究發展”, 中國機械工程, Vol.22, No19, 2011.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔