(3.231.29.122) 您好!臺灣時間:2021/02/26 01:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林群凱
研究生(外文):Chun-Kai Lin
論文名稱:富氧共伴流增進甲烷預混火焰穩定性與反應強度研究
論文名稱(外文):Enhancing Flame Stability of Lean Combustion and Reaction of Rich Combustion with Oxy-Coflow on Stratified Burner
指導教授:楊鏡堂楊鏡堂引用關係
口試日期:2017-07-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:79
中文關鍵詞:層狀化燃燒器富氧共伴流火焰之穩定性反應強度OH*自由基
外文關鍵詞:Stratified burnerOxy-coflowFlame stabilityIntensity of reactionOH* free radicals
相關次數:
  • 被引用被引用:0
  • 點閱點閱:81
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用具鈍體結構之層狀化燃燒器為載具,以外環富氧共伴流包覆中環預混甲烷火焰,利用粒子影像測速法、化學螢光法觀察燃燒流場結構與反應自由基強度分布,並量測火焰溫度及廢氣排放,探討共伴流氧氣濃度及其出口流速對不同當量比之預混甲烷火焰的影響。研究結果揭示富氧共伴流較空氣共伴流更有助於貧油甲烷火焰之穩定,且降低27 % -99 %之一氧化碳排放量,而應用在富油燃燒時可提升其燃燒效能。
本文之火焰基本型態可分為錐焰、半錐焰與飄焰三種,加入共伴流後,在特定參數下能使不穩定之貧油半錐焰轉為形似錐焰的穩定鬱金香焰。研究顯示在貧油燃燒時,隨共伴流氧氣濃度增加,半錐焰外側飄起之火焰高度隨之降低,火焰趨向穩定。在當量比ϕ = 0.78 - 0.87時,觀察不同流速之純氧與空氣共伴流的火焰穩定性,發現純氧共伴流可在更低的流速下使半錐焰轉為穩定的鬱金香焰。燃燒流場結構暫態影像及速度場分布顯示,純氧共伴流在較低流速下即產生雙渦旋結構可使火焰進入型態轉換區間。半錐焰型態之OH*自由基分布顯示,純氧共伴流之半錐焰焰腳下方的OH*強度明顯高於空氣共伴流,因此具有更多的激發態氧分子可促使甲基(CH3)氧化鏈鎖反應進行,因此純氧共伴流較空氣共伴流更有助於火焰穩定,同時也使預混燃氣反應更加完全,降低CO排放。富油燃燒時火焰溫度及化學螢光強度分布顯示,外層火焰面之溫度與OH*強度隨共伴流氧氣濃度增加而提升,內層預混火焰與外層火焰可達1900 K,意即通過內層錐焰後未燃之燃氣與中間產物如CO、H2可與富氧共伴流在外層火焰面處充分反應進而提高整體燃燒效能。本文之研究成果可擴大富氧燃燒技術之應用,藉由改變外環氧氣濃度與共伴流流速調控火焰穩定性及燃燒效能,達到高效能、安全且低汙染之燃燒。
In this study, the oxy-coflow is applied to surround premixed methane flame on a stratified burner. To discuss the effects of oxygen concentration and exit velocity of co-flow on the characteristics of premixed methane flame, the structure of combustion flow field and distributions of free radicals were investigated through the methods of Particle Image Velocimetry(PIV) and chemiluminescence. The flame temperature and the emissions of exhaust gas were also measured. The results reveal that the stability of the fuel-lean premixed flame with oxy-coflow becomes more stable than that with air co-flow, further, the emissions of carbon monoxide decreased 27 % - 99 %. On the other hand, the oxy-coflow enhances the combustion efficiency of fuel-rich combustion.
The basic flame pattern was classified into three various types, including lift off, half cone and cone flames. While adding co-flow, the unstable half cone flame transferred to the stable tulip flame. The flame stability of oxygen and air co-flow was observed under the equivalent ratio ϕ = 0.78 – 0.87 with different exit velocity. It was found that the oxygen co-flow could covert the half-cone flame to the tulip flame at a lower exit velocity due to earlier appearance of double vortex structure, which causes the flame pattern to transfer to the transition zone. The distributions of free radicals show that the intensity of OH* radicals with oxygen co-flow outside half-cone flame is significantly higher than that with air co-flow. This result implies there are more excited oxygen molecules promoting the chain reactions of methyl(CH3) oxidation. Therefore, the oxygen co-flow is not only more conductive to flame stability, but makes a more complete reaction of the premixed fuel mixture, which contributes to the reduction of CO emissions. For the fuel-rich combustion, the temperature and OH* intensity of the outer flame increased with an increasing concentration of oxy-coflow, It means the unburned gas and intermediate products such as CO, H2 reacted with the oxy-coflow more completely at outer flame, which improved the overall combustion efficiency. The results of this study expand the application of oxy-fuel combustion. By adjusting the oxygen concentration and exit velocity of co-flow, the flame stability enhances and a low pollution with a high efficiency combustion can be achieved.
目錄 i
圖表目錄 iv
第一章 前 言 1
1-1 研究背景 1
1-2 研究動機與願景 1
第二章 文獻回顧 3
2-1 燃燒基礎 4
2-1-1 火焰形態 4
2-1-2 當量比 4
2-1-3 可燃極限 5
2-2 貧油與富油燃燒之改善 6
2-2-1 鈍體穩焰 7
2-2-2 火焰間之交互作用 8
2-2-3 空氣共伴流 9
2-3 富氧燃燒 10
2-3-1 化學反應 10
2-3-2 燃燒特點 11
2-3-3 廢氣排放 12
2-4 文獻總結 13
第三章 研究方法 14
3-1 燃燒載具 15
3-2 燃氣供應系統 15
3-2-1 燃料與氧化劑特性 16
3-2-2 流量控制系統 17
3-3 實驗參數與因次分析 18
3-4 火焰型態記錄 19
3-5 粒子影像測速法 20
3-5-1 示蹤粒子 22
3-5-2 雷射系統 22
3-5-3 高速攝影機 24
3-6 化學螢光法 26
3-6-1 影像訊號放大器 26
3-6-2 光學濾鏡 27
3-7 溫度量測 28
3-8 廢氣量測分析 30
3-8-1 廢氣量測實驗架設 30
3-8-2 氣體分析儀 31
第四章 結果與討論 33
4-1 注入共伴流之環形貧油預混火焰 33
4-1-1 環型貧油甲烷火焰之型態分布 33
4-1-2 貧油預混火焰加入共伴流之PIV燃燒流場 42
4-1-3 環形貧油預混火焰加入共伴流之化學螢光分布 45
4-1-4 溫度分布 51
4-1-5 廢氣量測 55
4-2 注入共伴流之環形富油預混火焰 57
4-2-1 注入富氧共伴流之環形預混火焰型態 57
4-2-2 富油預混火焰加入共伴流之PIV燃燒流場 59
4-2-3 環形富油預混火焰加入共伴流之化學螢光分布 61
4-2-4 溫度量測 69
4-2-5 廢氣量測 73
第五章 結 論 74
5-1 甘梯圖 76
第六章 參考文獻 77
Andersson, K., & Johnsson, F. (2007). Flame and Radiation Characteristics of Gas-Fired O2/CO2 Combustion. Fuel, 86(5), 656-668.
Boushaki, T., Mergheni, M. A., Sautet, J. C., & Labegorre, B. (2008). Effects of Inclined Jets on Turbulent Oxy-Flame Characteristics in a Triple Jet Burner. Experimental Thermal and Fluid Science, 32(7), 1363-1370.
Chen, J.-W., Li, C.-C., Lin, H.-W., & Yang, J.-T. (2015). Effect of Air Coflow on Lean Premixed Flames on a Stratified Burner. Combustion Science and Technology, 187(9), 1317-1334.
De Leo, M., Saveliev, A., Kennedy, L. A., & Zelepouga, S. A. (2007). OH and CH Luminescence in Opposed Flow Methane Oxy-Flames. Combustion and Flame, 149(4), 435-447.
Ditaranto, M., & Oppelt, T. (2011). Radiative Heat Flux Characteristics of Methane Flames in Oxy-Fuel Atmospheres. Experimental Thermal and Fluid Science, 35(7), 1343-1350.
García-Armingol, T., Ballester, J., & Smolarz, A. (2013). Chemiluminescence-Based Sensing of Flame Stoichiometry: Influence of the Measurement Method. Measurement, 46(9), 3084-3097.
Giménez-López, J., Millera, A., Bilbao, R., & Alzueta, M. U. (2015). Experimental and Kinetic Modeling Study of the Oxy-Fuel Oxidation of Natural Gas, CH4 and C2H6. Fuel, 160, 404-412.
Joo, H. I., & Gülder, Ö. L. (2010). Soot Formation and Temperature Structure in Small Methane–Oxygen Diffusion Flames at Subcritical and Supercritical Pressures. Combustion and Flame, 157(6), 1194-1201.
Joo, P. H., Charest, M. R. J., Groth, C. P. T., & Gülder, Ö. L. (2013). Comparison of Structures of Laminar Methane–Oxygen and Methane–Air Diffusion Flames from Atmospheric to 60atm. Combustion and Flame, 160(10), 1990-1998.
Law, C. K. (2010). Combustion Physics: Cambridge university press.
Lin, H.-C., Cheng, T.-S., Chen, B.-C., Ho, C.-C., & Chao, Y. C. (2009). A Comprehensive Study of Two Interactive Parallel Premixed Methane Flames on Lean Combustion. Proceedings of the Combustion Institute, 32(1), 995-1002.
Nishimura, T., Kunitsugu, K., & Morio, K.-i. (2012). The Hysteresis Phenomenon in Flame Lift-Off on a Bluff-Body Burner under Airflow Dominant Conditions. Combustion and Flame, 159(4), 1499-1502.
Sahu, K. B., Kundu, A., Ganguly, R., & Datta, A. (2009). Effects of Fuel Type and Equivalence Ratios on the Flickering of Triple Flames. Combustion and Flame, 156(2), 484-493.
Shi, B., Shimokuri, D., & Ishizuka, S. (2014). Reexamination on Methane/Oxygen Combustion in a Rapidly Mixed Type Tubular Flame Burner. Combustion and Flame, 161(5), 1310-1325.
Starik, A. M., Kozlov, V. E., & Titova, N. S. (2010). On the Influence of Singlet Oxygen Molecules on the Speed of Flame Propagation in Methane–Air Mixture. Combustion and Flame, 157(2), 313-327.
Turns, S. R. (2000). An Introduction to Combustion, 2000. MacGraw Hill, Boston, Massachusetts, US.
Yamamoto, K., Kato, S., Isobe, Y., Hayashi, N., & Yamashita, H. (2011). Lifted Flame Structure of Coannular Jet Flames in a Triple Port Burner. Proceedings of the Combustion Institute, 33(1), 1195-1201.
Yang, J.-T., Chang, C.-C., & Pan, K.-L. (2002). Flow Structures and Mixing Mechanisms Behind a Disc Stabilizer with a Central Fuel Jet. Combustion Science and Technology, 174(3), 93-124.
林泓瑋,2010,環狀貧油火焰特性與注入空氣共伴流之影響,國立台灣大學機械工程學系碩士論文。
陳靖瑋,2014,層狀化燃燒流場之時空動態特型及穩焰機制研究,國立台灣大學機械工程學系博士論文。
董祐廷,2015,丙烷與合成氣混燒特型研究,國立台灣大學機械工程學系碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔