Azuma, A. (2012). The Biokinetics of Flying and Swimming. Springer Science & Business Media. Tokyo
Betts, C. R., and Wootton, R. J. (1988). Wing shape and flight behaviour in butterflies (Lepidoptera: Papilionoidea and Hesperioidea): a preliminary analysis. Journal of Experimental Biology, 138(1), 271-288.
Birch, J. M., and Dickinson, M. H. (2001). Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature, 412(6848), 729-733.
Byrne, D. N., Buchmann, S. L., and Spangler, H. G. (1988). Relationship between wing loading, wingbeat frequency and body mass in homopterous insects. Journal of Experimental Biology, 135(1), 9-23.
Chai, P., and Srygley, R. B. (1990). Predation and the flight, morphology, and temperature of neotropical rain-forest butterflies. American Naturalist, 748-765.
Combes, S. A., and Daniel, T. L. (2003). Flexural stiffness in insect wings I. Scaling and the influence of wing venation. Journal of experimental biology, 206(17), 2979-2987.
Dickinson, M. H. (1996). Unsteady mechanisms of force generation in aquatic and aerial locomotion. American Zoologist, 36(6), 537-554.
Dickinson, M. H., Lehmann, F. O., and Sane, S. P. (1999). Wing rotation and the aerodynamic basis of insect flight. Science, 284(5422), 1954-1960.
Dudley, R. (1990). Biomechanics of flight in neotropical butterflies: morphometrics and kinematics. Journal of Experimental Biology, 150(1), 37-53.
Dudley, R. (2002). The Biomechanics of Insect Flight: Form, Function, Evolution. Princeton University Press, New Jersey
Ellington, C. P., Van Den Berg, C., Willmott, A. P., and Thomas, A. L. (1996). Leading-edge vortices in insect flight. Nature, 384(6610), 626-630.
Fei, Y. H. J., and Yang, J. T. (2015). Enhanced thrust and speed revealed in the forward flight of a butterfly with transient body translation. Physical Review E, 92(3), 033004.
Fei, Y. H. J., and Yang, J. T. (2016). Importance of body rotation during the flight of a butterfly. Physical Review E, 93(3), 033124.
Fuchiwaki, M., Kuroki, T., Tanaka, K., and Tababa, T. (2013). Dynamic behavior of the vortex ring formed on a butterfly wing. Experiments in Fluids, 54(1), 1450.
Guo, X., Chen, D., and Liu, H. (2015). Does a revolving wing stall at low Reynolds numbers?. Journal of Biomechanical Science and Engineering, 10(4), 15-00588.
Heathcote, S., Wang, Z., and Gursul, I. (2008). Effect of spanwise flexibility on flapping wing propulsion. Journal of Fluids and Structures, 24(2), 183-199.
Liu, H., and H. Aono. "Size effects on insect hovering aerodynamics: an integrated computational study." Bioinspiration & Biomimetics 4.1 (2009): 015002.
Mountcastle, A. M., and Daniel, T. L. (2009). Aerodynamic and functional consequences of wing compliance. Experiments in Fluids, 46(5), 873-882.
Pederzani, J. N., and Haj-Hariri, H. (2006). Numerical analysis of heaving flexible airfoils in a viscous flow. AIAA Journal, 44(11), 2773-2779.
Pines, D. J., and Bohorquez, F. (2006). Challenges facing future micro-air-vehicle development. Journal of Aircraft, 43(2), 290-305.
Sane, S. P. (2003). The aerodynamics of insect flight. Journal of Experimental Biology, 206(23), 4191-4208.
Shyy, W., Trizila, P., Kang, C. K., and Aono, H. (2009). Can tip vortices enhance lift of a flapping wing?. AIAA Journal, 47(2), 289-293.
Srygley, R. B., and Dudley, R. (1993). Correlations of the position of center of body mass with butterfly escape tactics. Journal of Experimental Biology, 174(1), 155-166.
Takahashi, H., Tanaka, H., Matsumoto, K., and Shimoyama, I. (2012). Differential pressure distribution measurement with an MEMS sensor on a free-flying butterfly wing. Bioinspiration & Biomimetics, 7(3), 036020.
Tennekes, H. (2009). The Simple Science of Flight: from Insects to Jumbo Jets. Cambridge, Massachusetts London: MIT press.
Viieru, D., Albertani, R., Shyy, W., and Ifju, P. G. (2005). Effect of tip vortex on wing aerodynamics of micro air vehicles. Journal of Aircraft, 42(6), 1530-1536.
Weisfogh, T. (1973). Quick Estimates of Flight Fitness in Hovering Animals, Including Novel Mechanisms for Lift Production. Journal of Experimental Biology, 59(1): 169-230.
Wu, P., Stanford, B. K., Sällström, E., Ukeiley, L., and Ifju, P. G. (2011). Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings. Bioinspiration & Biomimetics, 6(1), 016009.
Yokoyama, N., Senda, K., Iima, M., and Hirai, N. (2013). Aerodynamic forces and vortical structures in flapping butterfly''s forward flight. Physics of Fluids, 25(2), 021902.
Zhao, L., Huang, Q., Deng, X., and Sane, S. P. (2010). Aerodynamic effects of flexibility in flapping wings. Journal of the Royal Society Interface, 7(44), 485-497.
Zhu, Q. (2007). Numerical simulation of a flapping foil with chordwise or spanwise flexibility. AIAA Journal, 45(10), 2448-2457.
王相博 (2013)。蝴蝶撲翼姿態對飛行影響之研究。臺灣大學機械工程學系暨研究所碩士論文,台北市王彥傑 (2016)。腹部動態對蝴蝶仿生飛行器控制之研究。臺灣大學機械工程學系暨研究所碩士論文,台北市費約翰 (2017)。蝴蝶身體俯仰動態之飛行動力與飛行操控研究。臺灣大學機械工程學系暨研究所博士論文,台北市