跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/01/15 03:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳柏儒
研究生(外文):Po-Ju Chen
論文名稱:智慧綠能混合電力系統元件選擇與最佳化設計
論文名稱(外文):Component Selection and System Optimization for Smart Green Hybrid Power System
指導教授:王富正
口試日期:2017-07-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:168
中文關鍵詞:綠能混合電力系統系統最佳化設計SimPowerSystem成本分析電力系統設計工具
外文關鍵詞:Green hybrid power systemSystem design optimizationSimPowerSystemCost analysispower system design tool
相關次數:
  • 被引用被引用:2
  • 點閱點閱:252
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一個綠能混合電力系統設計流程,先進行系統主要元件選擇,接著再進行元件規模與能量管理最佳化。我們利用此流程針對中華顧問工程之綠能示範屋狀況進行重新設計,並比較與原先性能之差異。本論文進一步建立參考資料庫與設計使用介面,作為系統設計工具,期望其他設計者能藉由開發之系統設計流程與設計工具,減少開發時程與有效提升系統性能。
首先,在設計流程中第一步的元件選擇上,我們分別針對供電來源與儲能元件進行選擇。在供電來源上,分析可選擇之能量來源的供電成本與供電穩定性,根據評估結果選擇供電成本最小且有效提升供電穩定性之組合;而在儲能元件上,則考慮各元件之成本、效率與使用限制,選出符合使用條件的元件。
其次,在系統元件規模與能量管理最佳化的部分,我們利用Matlab/SimPowerSystemTM建立電力系統模型,然後進行模擬,以分析成本與可靠度。根據設計需求,我們可選擇使用網格法建立設計參考圖討論相關限制並找出最佳化解,或者使用Pattern Search以較快速度得出最佳解。
最後,在設計工具上,除了將設計過之案例的成本分析與可靠度分析建成資料庫,也利用Matlab GUI介面設計模擬使用者介面,以供使用者參考資料庫與利用使用者介面作簡單測試,藉此了解調整不同參數對性能之影響。
為了促使人們使用綠能,必需降低綠能系統之成本與增加系統可靠度,而適當的設計流程可減少開發時程,並有效達到最佳化配置。另外,藉由資料庫與設計工具可了解對系統影響的因子,使政府與相關產業針對這些因素找出改善的方法,讓綠能混合電力系統在未來更有競爭力。
關鍵字: 綠能混合電力系統、系統最佳化設計、SimPowerSystem、成本分析、電力系統設計工具。
This thesis proposes an optimal design process to design hybrid power systems. The process consists of two steps: selection of system components and adjustment of component sizes and power management. We use this process to re-design the green energy house built by China Engineering Consultants, INC (CECI) and discuss the performance improvement by the proposed method. In addition to the design process, we also build the database and simulation design interface to shorten development time by referring to previous designs through the Graphical User Interface (GUI).
First, we select the suitable system components, such as power sources and energy storage elements. We analyze the cost and reliability of different energy sources to choose suitable energy sources. And we select the suitable energy storage components that can reduce system cost while satisfying the constraints.
Second, we adjust the component sizes and power management to optimize the system cost and reliability. We apply Matlab/SimPowerSystemTM to build the hybrid power model and use the simulation responses to estimate the system’s cost and reliability. We can use the grid method to obtain reference plots and to discuss possible solutions and constraints, or we can apply pattern search to find the optimal solution in a more efficient way.
Last, we build the data base and simulation interface by Matlab. The reference plots from the previous designs can be saved and shown by the Matlab GUI. We also build the simulation interface with Matlab GUI so that designers can use these GUIs to develop new systems in the fucture.
For promoting green energy, we need to reduce the system cost and improve the system reliability. Good design methods can help achieve these requirements efficiently. We hope that the proposed design process can allow the government and the related industry to develop competitive green energy policies and systems in the fucture.
致謝 I
中文摘要 III
ABSTRACT V
目錄 VII
圖目錄 XI
表目錄 XV
符號表 XVII
第一章 序論 1
1.1 研究目的與動機 1
1.2 文獻回顧 3
1.3 章節摘要 6
第二章 混合電力系統架構 7
2.1 混合電力系統介紹 7
2.2 太陽能光伏發電系統 8
2.3 風力發電系統 13
2.4 電力電子元件 15
2.5 燃料電池系統 16
2.6 電解產氫系統 25
2.7 化學產氫系統 26
2.8二次電池 29
第三章 後龍綠能示範屋介紹與現況 35
3.1 綠能示範屋簡介[39] 35
3.2 綠能示範屋電力系統架構與相關硬體 38
3.3綠能示範屋現況與問題 46
3.3.1 綠能示範屋再生能源現況 47
3.3.2 綠能示範屋目前問題與可能原因 49
第四章 混合電力系統元件選擇與最佳化設計 51
4.1 系統最佳化流程 51
4.2混合電力模型介紹 52
4.3混合電力系統性能指標介紹 55
4.3.1 供電成本函數 55
4.3.2 可靠度指標 64
4.3.3 安全指標Safety(t) 64
4.4 元件選擇分析 65
4.5元件數量最佳化方法 66
4.5.1網格法 66
4.5.2 Pattern searching 67
4.6 能量管理最佳化 73
4.7元件數量與能量管理最佳化設計迴圈 75
第五章 後龍綠能示範屋模擬分析與最佳化設計 77
5.1 混合電力系統模擬情境與設定參數 77
5.2 綠能示範屋元件選擇分析 80
5.2.1 供電元件選擇分析 80
5.2.2 儲能元件選擇分析 84
5.3 綠能示範屋現況規模管理最佳化分析 86
5.3.1 元件數量與能量管理最佳化迴圈示範 86
5.3.2 現行配置與最佳化配置的比較 91
5.3.3 風機與燃料電解產氫系統搭配燃料電池效益探討 98
5.4 綠能示範屋元件重新選擇最佳化 101
5.5 Pattern search於最佳化過程中的效益 107
5.6 負載與再生能源差異影響與改善方法 109
5.6.1 負載與再生能源差異的影響 109
5.6.2 利用Safety(t)提升供電可靠度與強韌性 113
5.6.3 其他改善混合電力系統的方法 116
第六章 最佳化設計輔助工具 119
6.1 Matlab Graphical User Interface 設計 119
6.2 資料庫建立 122
6.3 設計模擬平台 125
第七章 結論與未來展望 127
7.1 結論 127
7.2 未來工作 128
參考文獻 129
附錄A 後龍示範屋2016年5月~12月氣候資料作圖 135
附錄B 綠能示範屋元件種類不變最佳化設計參考圖 141
附錄C 綠能示範屋最佳化設計參考圖 147
附錄D 燃料電池相關控制 151
D.1 電流控制 151
D.2 溫度控制 160
附錄E 口試委員問題與回答 165
[1]經濟部能源局. (2016, Nov. 9). 能源統計年表. [Online]. Available: http://web3.moeaboe.gov.tw/ecw/populace/content/ContentLink.aspx?menu_id=378
[2]台灣電力公司. (2017, Mar. 13). 國家再生能源未來展望. [Online]. Available:
http://www.taipower.com.tw/content/new_info/new_info-b34.aspx?LinkID=8
[3]經濟部能源局. (2017, Mar. 11). 經濟部加速推動能源轉型. [Online]. Available:
https://www.moea.gov.tw/MNS/populace/news/News.aspx?kind=1&menu_id=40&news_id=63705
[4]Janet L. Sawin. (2016). Renewables 2016 global status report. [Online]. Available:
http://www.ren21.net/wp-content/uploads/2016/05/GSR_2016_Full_Report_lowres.pdf
[5]Hydrogeit. (2015, Sep. 21). ENE-FARM installed 120,000 residential fuel cell units. [Online]. Available: https://www.h2-international.com/2015/09/21/ene-farm-installed-120000-residential-fuel-cell-units/
[6]Toyota Mirai. [Online]. Available: https://ssl.toyota.com/mirai/fcv.html
[7]Peggy Mihelich. (2007, Sep. 20). Iceland phasing out fossil fuels for clean energy. CNN. [Online]. Available: http://edition.cnn.com/2007/TECH/science/09/18/driving.iceland/
[8]Coradia iLint regional train. [Online]. Available: http://www.alstom.com/products-services/product-catalogue/rail-systems/trains/products/coradia-ilint-regional-train-/
[9]F.C. Wang and H.C. Chen, “The development and optimization of customized
hybrid power systems,” International Journal of Hydrogen Energy, vol.41, no.28, pp.12261-12272, July. 2014
[10]O.H. Mohammed, Y. Amirat, M. Benbouzid and A.A. Elbaset, “Optimal design of a PV/fuel cell hybrid power system for the city of Brest in France,” Green Energy, 2014 International Conference on, Sfax, Tunisia, 2014.
[11]H. Rezzouk, M. Hatti, H. Rahmani and S. Atoui, “Assessment of Solar Hydrogen Production in an Energetic Hybrid PV-PEMFC System,” World Academy of Science, Engineering and Technology International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, vol.8, no.9, 2014.
[12]W. Wu, V.I. Christiana, S.A. Chen and J.J. Hwang, “Design and techno-economic optimization of a stand-alone PV(photovoltaic)/FC (fuel cell)/battery hybrid power system connected to a wastewater-to-hydrogen processor,” Energy, vol.84, pp. 462-472, May. 2015.
[13]A. Maleki and A. Askarzadeh, “Optimal sizing of a PV/wind/diesel system with battery storage for electrification to an off-grid remote region: A case study of Rafsanjan, Iran,” Sustainable Energy Technologies and Assessments, vol.7, pp. 147-153, Sep. 2014.
[14]蕭奕劭, 結合再生能源及電解產氫之混合電力系統之發展與最佳化設計, 國立台灣大學機械工程學研究所碩士論文, 2016。
[15]Y. Devrim and L. Bilir, “Performance investigation of a wind turbine–solar photovoltaic panels–fuel cell hybrid system installed at İncek region–Ankara, Turkey,” Energy Conversion and Management, vol.126, pp. 759-766, Oct. 2016.
[16]R. Hosseinalizadeh, H. Shakouri, M.S. Amalnick and P. Taghipour, “Economic sizing of a hybrid (PV–WT–FC) renewable energy system (HRES) for stand-alone usages by an optimization-simulation model: case study of Iran,” Renewable and Sustainable Energy Reviews, vol.54, pp. 139-150, Feb. 2016.
[17]S. Nasri, B.S. Sami and A. Cherif, “Power management strategy for hybrid autonomous power system using hydrogen storage,” International Journal of Hydrogen Energy, vol.41, no.2, pp.857-865, Jan. 2016.
[18]D. Ipsakis, S. Voutetakis, P. Seferlis, F. Stergiopoulos, S. Papadopoulou and C. Elmaside, “The effect of the hysteresis band on power management strategies in a stand-alone power system,” Energy, vol.33, no.10, pp.1537-1550, Oct. 2008.
[19]L. Valverde, F.J. Pino, J. Guerra and F. Rosa, “Definition, analysis and experimental investigation of operation modes in hydrogen-renewable-based power plants incorporating hybrid energy storage”, Energy Conversion and Management, vol.113, no.1, pp.290-311, Apr. 2016.
[20]C. Ziogou, D. Ipsakis, P. Seferlis, S. Bezergianni, S. Papadopoulou and S. Voutetakis, “Optimal production of renewable hydrogen based on an efficient energy management strategy,” Energy, vol.55, no.15, pp. 58-67, Jun. 2013.
[21]J.S. Al-Sumait, A.K. Al-Othman and J.K. Sykulski, “Application of pattern search method to power system valve-point economic load dispatch,” International Journal of Electrical Power & Energy Systems, vol.10, no.10, pp. 720-730, Dec. 2017.
[22]R. Dufo-Lopez, J.L. Bernal-Agustin and J. Contreras, “Optimization of control strategies for stand-alone renewable energy systems with hydrogen storage,” Renewable Energy, vol.32, no.7, pp. 1102-1126, Jun. 2007.
[23]B. Zhu, H. Tazvinga, and X. Xia, “Switched Model Predictive Control for Energy Dispatching of a Photovoltaic-Diesel-Battery Hybrid Power System,” IEEE Transactions on Control Systems Technology, vol.23, no.3, pp.1229-1236, May. 2015.
[24]吳鎮國、林國、盧以昕、許仲成、陳欣卉、吳育任。(2014. Apr). 淺談太陽能電池的原理與應用. [Online]. Available: https://www.ee.ntu.edu.tw/hischool/doc/2014.04.pdf
[25]T. Salmi, M. Bouzguebda, A. Gastli, A. Masmoudl, “Matlab/Simulink Based Modeling of Solar Photovoltaic Cell,” International Journal of Renewable Energy Research, vol.2, no.2, pp.213-218, 2012.
[26]風力發電原理. (n.d.). 台灣中小型風力發電機發展協會. [Online]. Available: http://www.small-wind.org.tw/content/wind/wind_principle.aspx
[27]Betz’s Law. (n.d.). Wikipedia. [Online]. Available: https://en.wikipedia.org/wiki/Betz%27s_law#cite_note-8
[28]垂直軸/水平軸之比較。 (n.d.). 主典興業股份有限公司。[Online]. Available: http://greenpower-yk.com/ch/products.php
[29]Vertical Axis Wind Turbines vs Horizontal Axis Wind Turbines. (2009, Nov. 10). Wind Power Engineering & decelopment. [Online]. Available: http://www.windpowerengineering.com/construction/vertical-axis-wind-turbines-vs-horizontal-axis-wind-turbines/
[30]V. Das, S. Padmanban, K. Venkitusamy, R. Selvamuthukumaran, F. Blaabjerg and P. Siano, “Recent advances and challenges of fuel cell based power system architectures and control – A review,” Renewable and Sustainable Energy Reviews, vol. 73, pp. 10-18, June. 2017.
[31]FC種類。 (n.d.) 台灣燃料電池資訊網。[Online]. Available: http://www.tfci.org.tw/Fc/class.asp
[32]許寧奕、顏溪成。(2003. July). 由碳朝向氫能的燃料電池。[Online].
Available: http://ejournal.stpi.narl.org.tw/NSC_INDEX/Journal/EJ0001/9207/9207-01.pdf
[33]D.J. Durbin and C. Malardier-Jugroot, “Review of hydrogen storage techniques for on board vehicle applications,” International Journal of Hydrogen Energy, vol.38, no.34, pp.14595-11617, Nov. 2013.
[34]S.C. Li and F.C. Wang, “The development of a sodium borohydride hydrogen generation system for proton exchange membrane fuel cell,” International Journal of Hydrogen Energy, vol.41, no.4, pp.3038-3051, Nov. 2016.
[35]S. Dutta, “A review on production, storage of hydrogen and its utilization as an energy resource,” Journal of Industrial and Engineering Chemistry, vol.20, no.4, pp.1148-1156, Jul. 2014.
[36]A.K. Figen and S. Pişkin, “Microwave assisted green chemistry approach of sodium metaborate dihydrate (NaBO 2• 2H 2 O) synthesis and use as raw material for sodium borohydride (NaBH 4) thermochemical production” International Journal of Hydrogen Energy, vol.38, no.9, pp 3702-3709, Mar. 2013.
[37]A.J. Hung, S.F. Tsai, Y.Y. Hsu, J.R. Ku, Y.H. Chen and C.C. Yu, “Kinetics of sodium borohydride hydrolysis reaction for hydrogen generation,” International Journal of Hydrogen Energy, vol. 33, no.21, pp. 6205-6215, Nov. 2008.
[38]許家興。(2010). 電動車電能系統開發。ARTC。[Online]. Available: https://www.artc.org.tw/chinese/03_service/03_02detail.aspx?pid=1457
[39]馬俊強、劉崑玉、林柏勳。(2016. Oct. 31). 獨立電網風、光、氫能源互補發電實驗與示範。 [Online]. Available: http://www.ceci.org.tw/Resources/upload/Cept/Quarterly/ed0887bb-4462-4b24-9a55-5371ef5938aa.pdf
[40]Solartech SEC-6P-60-3BB Series. (n.d.). Solartech. [Online]. Available: http://www.solartech-energy.com/Upload/ProductImages/SEC-6P-60-3BB.pdf
[41]MF-CP Series. (n.d.). M-Field. [Online]. Available: http://www.m-field.com.tw/download/Standard%20Products%20Series-CP.pdf
[42]MF-LP Series. (n.d.). M-Field. [Online]. Available: http://www.m-field.com.tw/download/Standard%20Products%20Series-LPH.pdf
[43]WPL150-12N. (n.d.). 廣隆深循環電池。[Online]. Available: http://www.klb.com.tw/dbf/WPL150-12N.pdf
[44]Weather Stations. (n.d.). Davis Instruments. [Online]. Available: www.davisnet.com
[45]Vantage Pro2 Plus Stations. (n.d.). Davis Instruments. [Online]. Available: http://www.davisnet.com/product_documents/weather/spec_sheets/6152_62_53_63_SS.pdf
[46]Annual Change of Consumer Price Indices in Taiwan Area, (n.d.). National Statistic Republic of China (Taiwan). [Online]. Available: http://eng.stat.gov.tw/ct.asp?xItem=12092&ctNode=1558&mp=5
[47]RENEWABLE ENERGY TECHNOLOGIES: COST ANALYSIS SERIES, (2012, Jun), International Renewable Energy Agency. [Online]. Available: https://www.irena.org/DocumentDownloads/Publications/RE_Technologies_Cost_Analysis-WIND_POWER.pdf
[48]SB-012036E. (n.d.). 台塑電池. [Online]. Available: http://www.formosabattery.com/j2ac/product_information/pdt_cat_12v.jsp#
[49]F.C. Wang and W.H. Fang, “The development of a PEMFC hybrid power electric vehicle with automatic sodium borohydride hydrogen generation,” International Journal of Hydrogen Energy, vol.42, no.15, pp.10376-10389, Apr. 2017.
[50]郭易夫, 燃料電池系統強韌分析, 國立台灣大學機械工程學研究所碩士論文, 2014。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top