跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/06 22:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:戴孟軒
研究生(外文):Meng-Syuan Dai
論文名稱:複合式雙腔體壓電泵之設計與分析
論文名稱(外文):Design and Analysis of Composite Dual Chamber Piezoelectric Micropump
指導教授:馬小康馬小康引用關係
指導教授(外文):Hsiao-Kan Ma
口試日期:2017-07-12
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:100
中文關鍵詞:雙腔體新型腔體螺紋凹槽脈動式混合
外文關鍵詞:dual chambernovel chamberscrew thread-like groovepulsed mixing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:112
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究設計一新型雙腔體壓電泵並分析其效能。雙腔體壓電泵結構包含兩平行之腔體並在中間放置壓電致動器,無論壓電致動器向上或是向下擺動,皆會在兩腔體內同時產生一對吸入模式與排出模式,並設計一新型腔體結構使腔體內部流場集中達到更好的工作表現。為了瞭解雙腔體設計的效益以及新型腔體結構相對於傳統平面腔體的改善效果,將以實驗量測單位時間流量以及背壓忍受度並探討之。實驗結果顯示雙腔體泵之最大流量以及最大流量下的背壓忍受度皆為單腔體泵的兩倍以上,新型腔體結構使最大流量從401.2 mL/min提升至514.7 mL/min,而使背壓忍受度從5.88 kPa增加至7.14 kPa。本研究亦探討了雙腔體泵的濃度混合表現。為了找出最佳混合效果,在不同雷諾數下(Reynolds number)以及不同壓電致動器操作頻率下找尋最佳參數。為了更進一步使出水口流場造成擾動,在出水口壁面設計一螺紋凹槽結構。實驗結果顯示,利用螺紋凹槽結構的出水口在雷諾數為400與壓電致動器操作頻率為145 Hz時達到最佳化混合。
A novel composite dual chamber piezoelectric micropump is designed and analyzed. The structure of novel micropump consists of two chambers which are arranged in parallel and an piezoelectric actuator located between the chambers. No matter what the actuator moves upward or downward, it will produce a pair of supply mode and pump mode simultaneously in the dual chamber. An innovative chamber structure is designed in order to concentrate the flow field for better pumping performance. To understand the effect of dual chamber piezoelectric micropump and the new design of chamber structure comparing to the traditional plane chamber, the flow rate and back pressure tolerance are tested experimentally in this study. The results show that the maximum flow rate and back pressure tolerance in the dual chamber pump are twice as large as in the single chamber pump. The new structure in the chambers enhance the maximum flow rate from 401.2 mL/min to 514.7 mL/min and also make the back pressure tolerance increase from 5.88 kPa to 7.14 kPa. In addition, mixing efficiency of dual chamber pump is discussed in this study. To achieve the optimal mixing, different Reynolds number (Re) and working frequency of piezoelectric actuator are tested experimentally to find the optimal parameter. In order to create more disturbance of flow field, a screw thread-like groove is designed at the outlet channel wall. The results show that an optimal mixing is attained under condition of Re equals 400 with screw thread-like groove at the outlet channel wall and actuator working frequency equals 145 Hz.
致謝 I
摘要 II
Abstract III
目錄 IV
符號說明 VII
圖目錄 X
表目錄 XV
第一章 緒論 1
1.1 前言 1
1.2 泵與微型泵簡介 2
1.2.1 泵 2
1.2.2 微型泵 3
1.3 壓電泵與微混合器簡介 4
1.3.1 壓電泵 4
1.3.2 微混合器 5
1.4 文獻回顧 6
1.4.1 微型泵 6
1.4.2 微混合器 11
1.5 研究動機與目的 14
1.6 研究流程 15
第二章 設計與原理 16
2.1 雙腔體壓電泵浦設計 16
2.1.1 壓電泵之結構 16
2.1.2 腔體設計 17
2.1.3 壓電致動器 17
2.1.4 混合流道 18
2.2 工作原理 18
2.3 理論分析 19
2.3.1 壓電耦合效應 19
2.3.2 彎矩理論 22
2.3.3 濃度量化 24
第三章 實驗架構與方法 25
3.1 實驗參數 25
3.1.1 不同結構之腔體 25
3.1.2 不同結構之出水口 25
3.2 實驗器材 25
3.3 實驗架構 27
3.4 實驗流程與操作參數 28
3.4.1 雙腔體壓電泵組裝 28
3.4.2 流量實驗 28
3.4.3 揚程實驗 30
3.4.4 濃度量化實驗 30
3.4.5 擴散係數實驗 31
3.4.6 混合實驗 32
第四章 結果與討論 34
4.1 不同結構之壓電泵流量表現 34
4.2 背壓忍受度比較 36
4.3 不同操作參數下之混合效果分析 37
第五章 結論與建議 39
5.1 結論 39
5.2 建議 40
參考文獻 41
附圖 45
附表 99
[1]H. K. Ma et al. ,“Development of an OAPCP-micropump liquid cooling system in a laptop”, International Communications in Heat and Mass Transfer 36 (2009) 225–232
[2]W. J. Spencer et al. ,“An electronically controlled piezoelectric insulin pump and valves”, IEEE transactions on sonics and ultrasonics 25 (1978)
[3]H. T. G. Van Lintel et al. ,“A piezoelectric micropump based on micromachining of silicon”, Sensors and Actuators A 15 (1988) 153-167
[4]J. G. Smits, “Piezoelectric micropump with three valves working peristaltically”, Sensors and Actuators A21-A23 (1990) 203-206
[5]R. Zengerle et al. ,“A micro membrane pump with electrostatic actuation”, IEEE Micro Electro Mechanical Systems (1992) 19-24
[6]E. Stemme and G. Stemme,“A valveless diffuser/nozzle-based fluid pump”, Sensors
and Actuators A 39 (1993) 159-167
[7]A. Olsson et al. ,“A valve-less planar fluid pump with two pump chambers”, Sensors and Actuators A 46-47 (1995) 549-556
[8]A. Ulmann,“The piezoelectric valve-less pump-performance enhancement analysis”, Sensors and Actuators A 69 (1998) 97-105
[9]A. Olsson et al. ,“A numerical design study of the valveless diffuser pump using a lumped-mass model”, Journal of Micromechanics and Microengineering 9 (1999) 34-44
[10]M. Khoo and C. Liu,“A novel micromachined magnetic membrane microfluid pump”, Proceeding of the 22nd Annual EMBS Int. Conference (2000) 2394-2397
[11]J. Tsai and L. Lin,“A thermal-bubble-actuated micronozzle-diffuser pump”, Journal
of Microelectromechanical systems 11 (2002) 665-671
[12]P. Woias,“Micropumps-past, progress and future prospects”, Sensors and Actuators B 105 (2005) 28-38
[13]T. Zhang and Q. M. Wang,“Valveless piezoelectric micropump for fuel delivery in direct methanol fuel cell(DMFC) devices”, Journal of Power Sources 140 (2005) 72-80
[14]E. G. Kim et al. ,“A study on the development of a continuous peristaltic micropump using magnetic fluids”, Sensors and Actuators A 128 (2006) 43-51
[15]J. Kan et al. ,“Development of serial-connection piezoelectric pumps”, Sensors and Actuators A 144 (2008) 321-327
[16]C. R. de Lima et al. ,“A biomimetic piezoelectric pump: Computational and experimental characterization”, Sensors and Actuators A 144 (2008) 321-327
[17]S. L. Vatanabe et al. ,“Design and characterization of a biomimetic piezoelectric pump inspired on pump fish swimming effect”, Journal of intelligent material systems and structures 21 (2010) 133-147
[18]M. Herz et al. ,“Design of ideal circular bending actuators for high performance micropumps”, Sensors and Actuators A 163 (2010) 231-239
[19]A. E. Kamholz et al. ,”Quantitative Analysis of Molecular Interaction in a Microfluidic Channel: The T-Sensor”, Anal. Chem. (1999) 71 5340-5347
[20]R. F. Ismagilov et al. ,”Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels”, Appl. Phys. Lett. 76 2376 (2000)
[21]D. Gobby et al. ,”Mixing characteristics of T-type microfluidic mixers”, J. Micromech. Microeng. 11 (2001) 126–132
[22]M. Yi and H. H. Bau,”The kinematics of bend-induced mixing in micro-conduits”, International Journal of Heat and Fluid Flow 24 (2003) 645–656
[23]N. Schwesinger et al. ,”A modular microfluid system with an integrated micromixer”, J. Micromech. Microeng. 6 (1996) 99–102
[24]R. Miyakel et al. ,”Micro Mixer with Fast Diffusion”, Proc. of MEMS’93 (1993)
[25]J. Voldman et al. ,“An integrated liquid mixer/valve”, Journal Of Microelectromechanical System 9 295–302 (2000)
[26]T. J. Johnson et al. ,“Rapid Microfluidic Mixing“, Anal. Chem. (2002) 74 45-51
[27]A. D. Stroock et al. ,“Chaotic Mixer for Microchannels“, Science 295 25 (2002)
[28]D. S. Kim et al. ,“A barrier embedded chaotic micromixer“, J. Micromech. Microeng. 14 (2004) 798–805
[29]P. B. Howell et al. ,“A microfluidic mixer with grooves placed on the top and bottom of the channel“, Lab Chip (2005) 5 524–530
[30]R. A. Vijayendran et al. ,“Evaluation of a Three-Dimensional Micromixer in a Surface-Based Biosensor“, Langmuir (2003) 19 1824-1828
[31]H. Chen and J. C. Meiners,“Topologic mixing on a microfluidic chip“, Appl. Phys. Lett. 84 12 (2004)
[32]H. Wang et al. ,“Optimizing layout of obstacles for enhanced mixing in microchannels“, Smart Mater. Struct. 11 (2002) 662–667
[33]V. Mengeaud et al. ,“Mixing Processes in a Zigzag Microchannel: Finite Element Simulations and Optical Study“, Anal. Chem. (2002) 74 4279-4286
[34]M. H. Oddy et al. ,“Electrokinetic Instability Micromixing“, Anal. Chem. (2001) 73 5822-5832
[35]H. H. Bau et al. ,“A minute magneto hydro dynamic (MHD) mixer“, Sensors and Actuators B 79 (2001) 207–215
[36]D. Ahmed et al. ,“A millisecond micromixer via single-bubble-based acoustic streaming“, Lab Chip (2009) 9 2738–2741
[37]G. Liu et al. ,“Continuous Flow Controlled Synthesis of Gold Nanoparticles Using Pulsed Mixing Microfluidic System“, Advances in Materials Science and Engineering Volume (2015)
[38]H. K. Ma et al. ,“Development of a piezoelectric-driven miniature pump forbiomedical applications“, Sensors and Actuators A 234 (2015) 23–33
[39]S. F. Li and S. C. Chen,“Analytical analysis of a circular PZT actuator for valveless micropumps”, Sensors and Actuators A 104 (2003) 151–161
[40]S. Timoshenko and S. Woinowsky-Krieger,“Theory of Plates and Shells”, second ed., McGraw-Hill, New York (1995)
[41]N. T. Nguyen,”Micromixers”, Norwich, NY, William Andrew (2008)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top