(3.232.129.123) 您好!臺灣時間:2021/03/06 01:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李幼新
研究生(外文):Yu-Hsin Lee
論文名稱:壓電磁力連動風扇結合均溫板系統應用於微型電腦內之散熱研究
論文名稱(外文):Study of the Integration of a Multiple PiezoelectricMagnetic Fans System with a Vapor Chamber Applied toa Micro Computer
指導教授:馬小康馬小康引用關係
指導教授(外文):Hsiao-Kan Ma
口試日期:2017-07-12
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:81
中文關鍵詞:壓電磁力連動風扇均溫板微型電腦PIV
外文關鍵詞:MFPApiezoelectric fanvapor chambermicro-computerPIV
相關次數:
  • 被引用被引用:0
  • 點閱點閱:77
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技的進步,電子產品及LED產業在生活中的重要性逐步提升,體積走向微型化,產生更大的散熱需求。散熱技術需要持續跟上,才能維護產品的功用,本實驗室之前發展出壓電磁力連動風扇的散熱技術,利用永久磁鐵搭配單片壓電片即可驅動多片扇葉進行強制對流散熱,在提高散熱效率的同時降低了噪音和高功耗等負面因素。

本研究將壓電磁力連動風扇和均溫板系統進行結合,設計了八種不同的風扇模組進行比較,並投入微型電腦之內部空間使用,將熱源產生的熱量,藉由均溫板傳遞到上方風扇前端的散熱鰭片,由壓電風扇系統輔助散熱,尋找最佳的模組以及影響散熱能力的各項參數。

實驗結果顯示有5片扇葉、扇葉間距11mm、扇葉由40mm長的碳纖維片和10mm麥拉片所組成的系統有最佳散熱效能,當熱源輸入功率為12W時,其熱阻值為2.99K/W,對流熱傳係數為21.98 Wm^(-2) K^(-1),Nu值為86.88,Ri值為0.199,顯示在散熱系統中強制對流的高比例,此時的熱阻值較僅使用熱管時提高了50.2%,而功耗值為遠低於旋轉風扇的0.0702W。在實驗比較中,在扇葉前端設置麥拉片、增加扇葉間距、增加扇葉數量都能提高系統的散熱效能。

同時本研究也進行了PIV實驗,觀察風扇模組運作時周圍的流場情形,從後續分析中發現,最大風速為2.796m/s,而扇葉前端近處的流場受到扇葉影響較為混亂,拉開距離之後即變得相當平穩,有助於後續實驗的操作。
In this study, a multiple fans system with a piezoelectric actuator (MFPA) was integrated with a vapor chamber. The integrated system was embedded in a micro-computer for its thermal management. The MFPA utilized magnetic repulsive force to transfer power from the piezoelectric actuator to the adjacent passive fans. Models with different fan length, fan pitch and the number of the fans were developed. The thermal performance, vibrational amplitude, and power consumption of different models were investigated.

The experiment results showed that the best models is the model with five fans, 11 mm fan pitch, 40 mm carbon fiber plate and 10 mm Mylar plate. When the input power of the system was 12W, it had the heat resistance 2.99℃/W, convective heat transfer coefficient 21.98 Wm^(-2) K^(-1), nusselt number 86.88, and Richardson number 0.199 when the power consumption was 0.0702W. The thermal resistance of all the models decreased when the input power increased. Besides, the model with shorter carbon fiber plate length, larger fan pitch and larger fan number had the lower thermal resistance.

The PIV experiment was also be conducted. After observing the particle’s moving trend, the max speed 2.796m/s was measured and it was analyzed that the flow field near to the fan would be disturbed by the fans, and the farther one would be relatively stable.
第一章 緒論 1
1.1前言 1
1.2電子元件散熱技術 2
1.2.1自然對流 2
1.2.2強制對流 3
1.2.3其他散熱技術 4
1.3 均溫板簡介 6
1.4文獻回顧 6
1.5研究動機 9
1.6研究目標 10
第二章 壓電散熱風扇 11
2.1壓電風扇原理 11
2.2壓電風扇結構與運作方式 12
2.3壓電風扇功耗 13
2.4壓電風扇優勢 13
2.5壓電磁力連動風扇原理 14
2.6散熱效率理論 15
第三章 實驗量測架構 18
3.1實驗儀器 18
3.2材料特性 20
3.3實驗設置 21
3.4實驗步驟 22
第四章 結果與討論 24
4.1找出擁有最佳效能之壓電磁力連動風扇 24
4.1.1碳纖維片和麥拉片尺寸組合對於共振頻率之影響 24
4.1.2輸入電壓對於壓電磁力連動風扇之平均振幅和功率之影響 24
4.2熱源輸入對於壓電磁力連動風扇散熱能力之影響 25
4.2.1 相同扇葉片數的模組在不同熱源輸入功率之比較與排序 25
4.2.2 不同扇葉片數的模組在不同熱源輸入功率之比較 26
4.2.3 各項變數對於熱阻大小影響分析 26
4.3 其他相關散熱能力係數分析 27
4.4 風扇模組和其他散熱方式之比較 28
4.5 風扇模組於PIV觀測結果 29
第五章 結論與未來研究建議 30
5.1研究結論 30
5.2未來研究建議及展望 33
參考文獻 34
附圖 37
附表 73
[1]Y. A. Cengel, Heat Transfer A Practical Approach Second Eddition, MacGraw-Hill, New York (2003) 156-167.
[2]Y. A. Cengel, Thermodynamics an Engineering Approach Sixth Eddition, MacGraw-Hill, New York (2003) 243-245.
[3]Y. A. Cengel, Heat Transfer A Practical Approach, MacGraw-Hill, New York (2003) 668-675.
[4]M. Toda, Theory of air flow generation by a resonant type PVF2 bimorph cantilever vibrator, Ferroelectrics 22 (1979) 911-918.
[5]M. Toda, Voltage-induced large amplitude bending device-PVF2 bimorph-its properties and applications, Ferroelectrics 32 (1981) 127-133.
[6]T. Açıkalın, S.V. Garimella, A. Raman, J. Petroski, Characterization and optimization of the thermal performance of miniature piezoelectric fans, International Journal of Heat and Fluid Flow 28 (4) (2007) 806-820.
[7]S. F. Liu, R. T. Huang, W. J. Sheu, C. C. Wang, Heat Transfer by a Piezoelectric Fan on a Flat Surface Subject to the Influence of Horizontal/Vertical Arrangement, International Journal of Heat and Mass Transfer, Vol. 52, No. 11, pp. 2565-2570, 2009.
[8]H. Y. Li, S. M. Chao, J. W. Chen, J. T. Yang, Thermal Performance of Plate-fin Heat Sinks with Piezoelectric Cooling Fan, International Journal of Heat and Mass Transfer, Vol. 57, pp. 722-732, 2013.
[9]S. F. Sufian, M. Z. Abdullah, J. J. Mohamed, Effect of synchronized piezoelectric fans on microelectronic cooling performance, International Communications in Heat and Mass Transfer (43) (2013) 81-89.
[10]Z. M. Fairuz, S. F. Sufian, M. Z. Abdullah, M. Zubair, M. S. Abdul Aziz, Effect of piezoelectric fan mode shape on the heat transfer characteristics, International Communications in Heat and Mass Transfer Vol.52, pp.140–151, 2014.
[11]J. C. Shyu, J. Z. Syu, Plate-fin array cooling using a finger-like piezoelectric fan, Applied Thermal Engineering Vol.62, pp.573-580, 2014.
[12]W. J. Sheu, G. J. Chen, C. C. Wang, Performance of piezoelectric fins for heat dissipation, International Journal of Heat and Mass Transfer, Vol. 86, pp.72-77, 2015.
[13]H. K. Ma, H. C. Su, C. L. Liu, and W. H. Ho, Investigation of a piezoelectric fan embedded in a heat sink, International Communications in Heat and Mass Transfer (39) (2012) 603-609.
[14]H. K. Ma, L. K. Tan, Y. T. Li, Investigation of a multiple piezoelectric–magnetic fan system embedded in a heat sink, International Communications in Heat and Mass Transfer 59 (2014) 166-173.
[15]H. K. Ma , L. K. Tan, Y.T. Li, C.L. Liu, Optimum thermal resistance of the multiple piezoelectric–magnetic fan system, International Communications in Heat and Mass Transfer 55 (2014) 77–83
[16]H. K. Ma, Y. T. Li, Thermal performance of a dual-sided multiple fans system with a piezoelectric actuator on LEDs, International Communications in Heat and Mass Transfer (66) (2015) 40-46.
[17]H. K. Ma, Y. T. Li, S. Y. Ke, C. P. Lin, The role of housing design in a multiple fans system with a piezoelectric actuator, Applied Thermal Engineering 91 (2015) 986-993.
[18]M. Reyes, D. Alonso, J.R. Arias, A. Velazquez, Experimental and theoretical study of a vapour chamber based heat spreader for avionics applications, Applied Thermal Engineering 37, pp. 51-59, 2012.
[19]P. Naphon, S. Wongwises, S. Wiriyasart, Application of two-phase vapor chamber technique for hard disk drive cooling of PCs, International Communications in Heat and Mass Transfer 40, pp. 32-35, 2013.
[20]K. Mizuta, R. Fukunaga, K. Fukuda, S. Nii, T. Asano, Development and characterization of a flat laminate vapor chamber, Applied Thermal Engineering Vol.104, pp. 461–471, 2016.
[21]Y. Li, Z. Li, W. Zhou, Z. Zeng, Y. Yan, B. Li, Experimental investigation of vapor chambers with different wick structures at various parameters, Experimental Thermal and Fluid Science Vol.77, pp.132–143, 2016.
[22]G. Patankar, J, A. Weibel, S. V. Garimella, Patterning the condenser-side wick in ultra-thin vapor chamber heat spreaders to improve skin temperature uniformity of mobile devices, International Journal of Heat and Mass Transfer Vol.101, pp.927–936, 2016.
[23]劉俊麟,壓電磁力連動風扇技術於電子元件之散熱應用研究,國立臺灣大學工學院機械工程學研究所碩士論文 (2013)。
[24]J. Petroski, M. Arik, M. Gursoy, Optimization of Piezoelectric Oscillating Fan-Cooled Heat Sinks for Electronics Cooling, IEEE Transactions on Components and Packaging Technology, Vol.33, pp.25-31, No.1, March 2010.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔