跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/14 21:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林信霆
研究生(外文):Hsin-Ting Lin
論文名稱:交錯潤濕性表面於紅銅圓管表面之冷凝熱傳研究
論文名稱(外文):Effect of Interlaced Wettability on a Horizontal Copper Tube in Condensation Heat Transfer
指導教授:陳炳煇陳炳煇引用關係
指導教授(外文):Ping-Hei Chen
口試日期:2017-07-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:83
中文關鍵詞:冷凝熱傳表面改質交錯潤濕性溶膠-凝膠法不可凝結氣體
外文關鍵詞:condensation heat transfersurface modificationinterlaced wettabilitysol-gel methodnon-condensable gas
相關次數:
  • 被引用被引用:0
  • 點閱點閱:292
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以外直徑25mm的紅銅圓管作為熱傳介質,使用溶膠凝膠法及低表面能物質塗覆作為改質方法,並以模切膠帶作為遮罩製備出以超疏水表面為基底之異質潤濕性表面,於含不可凝結氣體之環境下探討其對冷凝熱傳之影響。改質表面之接觸角大於150゚,未改質之紅銅表面經烘烤後接觸角約為100゚,而改質條紋之寬度分別為1.5mm、2.5mm,4.5mm、5.5mm,未改質條紋寬度則固定在0.5mm。
實驗結果顯示改質均質超疏水表面在低過冷度時相較於未改質表面之冷凝熱傳係數有30%左右的成長,當過冷度大於4 K時,均質超疏水表面將出現浸潤轉變,此時冷凝熱傳係數與未改質表面相近。而當改質條紋為1.5mm,過冷度為9 K時,交錯潤濕性表面對於冷凝熱傳表現有較好的增強效果,然而當表面過冷度低時,交錯潤濕性表面之冷凝熱傳係數均不如均質超疏水表面。
This study investigated the effect of tube surfaces with superhydrophobicity-based interlaced wettability on steam–air mixture condensation. Experiments were conducted on various types of surface with different modified strip widths varied from 1.5mm to 0.55mm. The contact angle of the modified surface is about 150゚, and the contact angle of the copper surface after heated is about 100゚.
The experimental results revealed that the condensation heat transfer coefficient on the homogeneous modified surface could be 30% higher than the plain copper surface when the wall subcooling is lower than 4 K. However, when the wall subcooling is higher than 4 K, the condensation heat transfer coefficient on the homogeneous modified surface is almost the same as the plain copper surface. When the wall subcooling is 9 K, the condensation heat transfer coefficient of interlaced wettability surface with modified strip width of 1.5mm is higher than the modified homogeneous surface. However, the condensation heat transfer performance cannot be improved by interlaced wettability surface when the wall subcooling is low.
誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vi
表目錄 ix
英文符號說明 x
希臘符號說明 xii
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究目的 7
第二章 研究基本理論 17
2.1 表面潤濕性 17
2.1.1 潤濕性 17
2.1.2 接觸角理論 17
2.2 溶膠-凝膠法(Sol-gel Method) 25
2.3 冷凝熱傳 27
2.3.1 非均質冷凝之成核(heterogeneous nucleation) 27
2.3.2 液滴成長(growth) 28
2.3.3 液滴排除(removal) 29
2.4 交錯潤濕性表面之理論模型 33
2.4.1 交錯潤濕性表面之冷凝熱傳係數 33
2.4.2 不可凝結氣體之影響 34
第三章 實驗設備及流程 35
3.1 表面改質 35
3.1.1 化學藥品 35
3.1.2 設備 36
3.1.3 表面改質步驟 37
3.2 冷凝實驗系統 44
3.2.1 設備 44
3.2.2 實驗步驟 45
第四章 結果與討論 55
4.1 表面過冷度之影響 55
4.2 交錯潤濕性表面之影響 59
4.2.1 交錯潤濕性表面之冷凝熱傳係數 59
4.2.2 交錯潤濕性表面之液滴行為 59
4.3 曲率之影響 71
第五章 結論與未來工作 75
5.1 結論 75
5.2 未來工作 76
參考文獻 78
[1] M. L. Corradini, “Advanced nuclear energy systems: heat transfer issues and trends,” Rohsenow Symposium on Future Trends in Heat Transfer: MIT, 2003
[2] F. T. Malik, R.M. Clement, D.T Gethin, W. Krawszik, and A. R. Parker, “Nature’s moisture harvesters: a comparative review,”Bioinspiration & Biomimetics, vol. 9,031002,2014
[3] G. Jin, K. S. Lee, and B. Seo, “Characteristics of condensation formation on the surfaces of air conditioning indoor units,” Applied Thermal Engineering, vol.91, pp.345-353,2015
[4] S. W. Sharshir, G. Peng, N. Yang, M. O. A. El-Samadony, and A. E. Kabeel, “A continuous desalination system using humidification - dehumidification and a solar still with an evacuated solar water heater,’’ Applied Thermal Engineering, vol.104, pp.734-742,2016
[5] E. Schmidt, W. Schurig, and W. Sellschopp, “Condensation of water vapor in film and drop form,” Zeitschrift Des Vereines Deutscher Ingenieure, vol.74, pp. 544-544,1930
[6] E. J. Le Fevre and J. W. Rose, “A theory of heat transfer by dropwise condensation,” Proceedings of the Third International Heat Transfer Conference,vol.2,pp.362-375,1966
[7] J. W. Rose, “Condensation heat transfer,” Heat Mass Transfer, vol.6, pp.479-485,1999
[8] D. C. Zhang, D. Lin, and J. F. Lin, “New surface materials for dropwise condensation,”Proceedings of the Eighth International Heat Transfer Conference, vol.4,1677,1986
[9] Q. Zhao, D. C. Zhang, and J. F. Lin, ” Surface materials with dropwise condensation made by ion implantation technology,” Heat Mass Transfer, vol. 34, pp 2833–2835,1991
[10] G. Wang, Q. Zhao, G. Li, F. Fu, and S. Li, “ Vertical dropwise condensation shell and tube heat exchanger for steam with water cooling,” China Patent Bureau, Patent No. 91201592.6 ,1992
[11] W. Barthlott and C. Neinhuis, “ Purity of the sacred lotus,or escape from contamination in biological surfaces,” Planta, vol.202, pp 1-8,1997
[12] J. Bico, C. Marzolin, and D. Quere, “ Pearl drops,” Europhysics letters, vol.47, pp220-226,1999
[13] M. H. Jin, X. J. Feng, J. Xi, J. Zhai, K. W. Cho, L. Feng, and J. Lei, “SuperHydrophobic PDMS Surface with Ultra-Low Adhesive Force,” Macromolecular Rapid Communications, vol.26, pp1805-1809,2005
[14] R. D. Narhe and D. A. Beysens, “ Growth dynamics of water drops on a squarepattern rough hydrophobic surface,” Langmuir, vol. 23, pp. 6486-6489, 2007
[15] D. Bonn, “ Wetting transitions,” Current opinion in colloid & interface science, vol.6, pp22-27,2001
[16] G. Whyman and E. Bormashenko, “ Wetting Transitions on Rough Substrates: General Considerations,” Journal of Adhesion Science and Technology, vol.26, pp207-220,2012
[17] W. Lei, Z. H. Jia, J. C. He, T. M. Cai, and G. Wang, “ Vibration-induced WenzelCassie wetting transition on microstructured hydrophobic surfaces,” Applied Physics Letters, vol. 104, 181601, 2014
[18] J. T. Cheng, A. Vandadi, and C. L. Chen, “ Condensation heat transfer on two-tier superhydrophobic surfaces,” Applied Physics Letters, vol. 101, 131909, 2012
[19] N. Miljkovic, R. Enright, Y. Nam, K. Lopez, N. Dou, J. Sack, and E. N. Wang, “ Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces,” Nano Letters, vol. 13, pp. 179-187, 2013
[20] K. Rykaczewski, W. A. Osborn, J. Chinn, M. L. Walker, J. H. J. Scott, W. Jones, C. L. Hao, S. H. Yao, and Z. K. Wang, “ How nanorough is rough enough to make a surface superhydrophobic during water condensation?,” Soft Matter, vol. 8, pp. 8786-8794, 2012
[21] R. Enright, N. Miljkovic, A. Al-Obeidi, C. V. Thompson, and E. N. Wang, “ Condensation on superhydrophobic surfaces: the role of local energy barriers and structure length scale” Langmuir, vol. 28, pp. 14424-14432, 2012
[22] F. Q. Chu, X. M. Wu, Y. Zhu, and Z. P. Yuan, “ Relationship between condensed droplet coalescence and surface wettability,” International Journal of Heat and Mass Transfer, vol. 111, pp. 836-841, 2017
[23] M. Washizu, “ Electrostatic actuation of liquid droplets for microreactor applications,” IEEE Tansactions on industrial application, vol. 34, pp.732-737,1998
[24] A. Chatterjee, M. M. Derby, Y. Peles, and M. K. Jensen, “ Enhancement of condensation heat transfer with patterned surfaces,” International Journal of Heat and Mass Transfer, vol. 71, pp. 675-681, 2014
[25] A. M. Macner, S. Daniel, and P. H. Steen, “ Condensation on surface energy gradient shifts drop size distribution toward small drops,” Langmuir, vol. 30, pp. 1788-1798, 2014
[26] B. L. Peng, X. H. Ma, Z. Lan, W. Xu, and R. F. Wen, “ Experimental investigation on steam condensation heat transfer enhancement with vertically patterned hydrophobic-hydrophilic hybrid surfaces,” International Journal of Heat and Mass Transfer, vol. 83, pp. 27-38, 2015
[27] A. Ghosh, R. Ganguly, T. M. Schutzius and C. M. Megaridis, “ Wettability patterning for high-rate, pumpless fluid transport on open, non-planar microfluidic platforms,” Lab on a Chip, vol. 14, pp.1538-1550, 2014
[28] A. Ghosh, S. Beaini, B. J. Zhang, R. Ganguly, and C. M. Megaridis, “ Enhancing dropwise condensation through bioinspired wettability patterning,” Langmuir, vol. 30, pp. 13103-13115, 2014
[29] Y. A. Lee, L. S. Kuo, T. W. Su, C. C. Hsu, and P. H. Chen, “ Orientation effects of nanoparticle-modified surfaces with interlaced wettability on condensation heat transfer,” Applied Thermal Engineering, vol. 98, pp. 1054-1060, 2016
[30] S. Ditrich, “ Wetting Phenomena,” Phase Transitions and Critical Phenomena, vol.12, pp.1-218, 1988
[31] R. N. Wenzel , “ Resistance of Solid Surfaces to Wetting by Water,” Industrial & Engineering Chemestry , vol. 28, pp. 988–994,1936
[32] A. Lafuma and D. Quere, “ Superhydrophobic states,” Nature Materials, vol. 2, pp. 457-460, 2003
[33] A. B. D. Cassie and S. Baxter, “ Wettability of porous surfaces,” Transactions of the Faraday Society, vol. 40, pp. 0546-0550, 1944
[34] N. Miljkovic, R. Enright, and E. N. Wang, “ Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces,” ACS Nano, vol. 6, pp. 1776-1785, 2012
[35] E. Bormashenko, “ Wetting of real solid surfaces: new glance on well-known problems,” Colloid and Polymer Science, vol. 291, pp. 339-342, 2013
[36] Q. S. Zheng , Y. Yu , and Z. H. Zhao, “Effects of Hydraulic Pressure on the Stability and Transition of Wetting Modes of Superhydrophobic Surfaces,” American Chemical Society Journals, vol. 21, pp. 12207-12212, 2005
[37] C. W. Lo, C. C. Wang, and M. C. Lu, “ Spatial control of heterogeneous nucleation on the superhydrophobic nanowire array,” Advanced Functional Materials, vol. 24, pp. 1211-1217, 2014
[38] J. L. Viovy, D. Beysens, and C. M. Knobler, “ Scaling description for the growth of condensation patterns on surfaces,” Physical Review A, vol. 37, pp. 4965-4970, 1988
[39] D. Beysens, “ The formation of dew,” Atmospheric Research, vol. 39, pp. 215-237, 1995
[40] F. Q. Chu and X. M. Wu, “ Fabrication and condensation characteristics of metallic superhydrophobic surface with hierarchical micro-nano structures,” Applied Surface Science, vol. 371, pp. 322-328, 2016
[41] B. Hamid Reza Talesh and S. Hamid, “ Theoretical study of stable dropwise condensation on an inclined micro/nano-structured tube,” International Journal of Refrigeration, vol. 75, pp. 141-154, 2017
[42] I. Tanasawa, J. Ochiai, “ Experimental study on dropwise condensation,” Bulletin of the Japan Society of Mechanical Engineers, vol. 16, pp. 1184-1197, 1972
[43] H. W. Hu, G. H. Tang, “ Theoretical investigation of stable dropwise condensation heat transfer on a horizontal tube,” Applied Thermal Engineering, vol. 62, pp. 671-679, 2014
[44] M. M. Garimella, S. Koppu, S. S. Kadlaskar, V. Pillutla, A. W. Choi, “Difference in growth and coalescing patterns of droplets on bi-philic surfaces with varying spatial distribution,” Journal of Colloid and Interface Science, vol. 505, pp. 1065-1073, 2017
[45] M. Alwazzan, K. Egab, B. Peng, J. Kahn, and L. Chen, “Condensation on hybrid patterned copper tubes (II): Visualization study of droplet dynamics,” International Journal of Heat and Mass Transfer, vol. 112, pp. 950-958, 2017
[46] X. H. Ma, X. D. Zhou, Z. Lan, Y. M. Li, Y. Zhang, “Condensation heat transfer enhancement in the presence of non-condensable gas using the interfacial effect of dropwise condensation,” International Journal of Heat and Mass Transfer, vol. 51, pp.1729-1737, 2008
[47] K. C. Park, P. Kim, A. Grinthal, N. He, D. Fox, J. C. Weaver, and J. Aizenberg, “ Condensation on slippery asymmetric bumps,” Nature, vol. 531, pp. 78-82, 2016
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊