|
[1] M. L. Corradini, “Advanced nuclear energy systems: heat transfer issues and trends,” Rohsenow Symposium on Future Trends in Heat Transfer: MIT, 2003 [2] F. T. Malik, R.M. Clement, D.T Gethin, W. Krawszik, and A. R. Parker, “Nature’s moisture harvesters: a comparative review,”Bioinspiration & Biomimetics, vol. 9,031002,2014 [3] G. Jin, K. S. Lee, and B. Seo, “Characteristics of condensation formation on the surfaces of air conditioning indoor units,” Applied Thermal Engineering, vol.91, pp.345-353,2015 [4] S. W. Sharshir, G. Peng, N. Yang, M. O. A. El-Samadony, and A. E. Kabeel, “A continuous desalination system using humidification - dehumidification and a solar still with an evacuated solar water heater,’’ Applied Thermal Engineering, vol.104, pp.734-742,2016 [5] E. Schmidt, W. Schurig, and W. Sellschopp, “Condensation of water vapor in film and drop form,” Zeitschrift Des Vereines Deutscher Ingenieure, vol.74, pp. 544-544,1930 [6] E. J. Le Fevre and J. W. Rose, “A theory of heat transfer by dropwise condensation,” Proceedings of the Third International Heat Transfer Conference,vol.2,pp.362-375,1966 [7] J. W. Rose, “Condensation heat transfer,” Heat Mass Transfer, vol.6, pp.479-485,1999 [8] D. C. Zhang, D. Lin, and J. F. Lin, “New surface materials for dropwise condensation,”Proceedings of the Eighth International Heat Transfer Conference, vol.4,1677,1986 [9] Q. Zhao, D. C. Zhang, and J. F. Lin, ” Surface materials with dropwise condensation made by ion implantation technology,” Heat Mass Transfer, vol. 34, pp 2833–2835,1991 [10] G. Wang, Q. Zhao, G. Li, F. Fu, and S. Li, “ Vertical dropwise condensation shell and tube heat exchanger for steam with water cooling,” China Patent Bureau, Patent No. 91201592.6 ,1992 [11] W. Barthlott and C. Neinhuis, “ Purity of the sacred lotus,or escape from contamination in biological surfaces,” Planta, vol.202, pp 1-8,1997 [12] J. Bico, C. Marzolin, and D. Quere, “ Pearl drops,” Europhysics letters, vol.47, pp220-226,1999 [13] M. H. Jin, X. J. Feng, J. Xi, J. Zhai, K. W. Cho, L. Feng, and J. Lei, “SuperHydrophobic PDMS Surface with Ultra-Low Adhesive Force,” Macromolecular Rapid Communications, vol.26, pp1805-1809,2005 [14] R. D. Narhe and D. A. Beysens, “ Growth dynamics of water drops on a squarepattern rough hydrophobic surface,” Langmuir, vol. 23, pp. 6486-6489, 2007 [15] D. Bonn, “ Wetting transitions,” Current opinion in colloid & interface science, vol.6, pp22-27,2001 [16] G. Whyman and E. Bormashenko, “ Wetting Transitions on Rough Substrates: General Considerations,” Journal of Adhesion Science and Technology, vol.26, pp207-220,2012 [17] W. Lei, Z. H. Jia, J. C. He, T. M. Cai, and G. Wang, “ Vibration-induced WenzelCassie wetting transition on microstructured hydrophobic surfaces,” Applied Physics Letters, vol. 104, 181601, 2014 [18] J. T. Cheng, A. Vandadi, and C. L. Chen, “ Condensation heat transfer on two-tier superhydrophobic surfaces,” Applied Physics Letters, vol. 101, 131909, 2012 [19] N. Miljkovic, R. Enright, Y. Nam, K. Lopez, N. Dou, J. Sack, and E. N. Wang, “ Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces,” Nano Letters, vol. 13, pp. 179-187, 2013 [20] K. Rykaczewski, W. A. Osborn, J. Chinn, M. L. Walker, J. H. J. Scott, W. Jones, C. L. Hao, S. H. Yao, and Z. K. Wang, “ How nanorough is rough enough to make a surface superhydrophobic during water condensation?,” Soft Matter, vol. 8, pp. 8786-8794, 2012 [21] R. Enright, N. Miljkovic, A. Al-Obeidi, C. V. Thompson, and E. N. Wang, “ Condensation on superhydrophobic surfaces: the role of local energy barriers and structure length scale” Langmuir, vol. 28, pp. 14424-14432, 2012 [22] F. Q. Chu, X. M. Wu, Y. Zhu, and Z. P. Yuan, “ Relationship between condensed droplet coalescence and surface wettability,” International Journal of Heat and Mass Transfer, vol. 111, pp. 836-841, 2017 [23] M. Washizu, “ Electrostatic actuation of liquid droplets for microreactor applications,” IEEE Tansactions on industrial application, vol. 34, pp.732-737,1998 [24] A. Chatterjee, M. M. Derby, Y. Peles, and M. K. Jensen, “ Enhancement of condensation heat transfer with patterned surfaces,” International Journal of Heat and Mass Transfer, vol. 71, pp. 675-681, 2014 [25] A. M. Macner, S. Daniel, and P. H. Steen, “ Condensation on surface energy gradient shifts drop size distribution toward small drops,” Langmuir, vol. 30, pp. 1788-1798, 2014 [26] B. L. Peng, X. H. Ma, Z. Lan, W. Xu, and R. F. Wen, “ Experimental investigation on steam condensation heat transfer enhancement with vertically patterned hydrophobic-hydrophilic hybrid surfaces,” International Journal of Heat and Mass Transfer, vol. 83, pp. 27-38, 2015 [27] A. Ghosh, R. Ganguly, T. M. Schutzius and C. M. Megaridis, “ Wettability patterning for high-rate, pumpless fluid transport on open, non-planar microfluidic platforms,” Lab on a Chip, vol. 14, pp.1538-1550, 2014 [28] A. Ghosh, S. Beaini, B. J. Zhang, R. Ganguly, and C. M. Megaridis, “ Enhancing dropwise condensation through bioinspired wettability patterning,” Langmuir, vol. 30, pp. 13103-13115, 2014 [29] Y. A. Lee, L. S. Kuo, T. W. Su, C. C. Hsu, and P. H. Chen, “ Orientation effects of nanoparticle-modified surfaces with interlaced wettability on condensation heat transfer,” Applied Thermal Engineering, vol. 98, pp. 1054-1060, 2016 [30] S. Ditrich, “ Wetting Phenomena,” Phase Transitions and Critical Phenomena, vol.12, pp.1-218, 1988 [31] R. N. Wenzel , “ Resistance of Solid Surfaces to Wetting by Water,” Industrial & Engineering Chemestry , vol. 28, pp. 988–994,1936 [32] A. Lafuma and D. Quere, “ Superhydrophobic states,” Nature Materials, vol. 2, pp. 457-460, 2003 [33] A. B. D. Cassie and S. Baxter, “ Wettability of porous surfaces,” Transactions of the Faraday Society, vol. 40, pp. 0546-0550, 1944 [34] N. Miljkovic, R. Enright, and E. N. Wang, “ Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces,” ACS Nano, vol. 6, pp. 1776-1785, 2012 [35] E. Bormashenko, “ Wetting of real solid surfaces: new glance on well-known problems,” Colloid and Polymer Science, vol. 291, pp. 339-342, 2013 [36] Q. S. Zheng , Y. Yu , and Z. H. Zhao, “Effects of Hydraulic Pressure on the Stability and Transition of Wetting Modes of Superhydrophobic Surfaces,” American Chemical Society Journals, vol. 21, pp. 12207-12212, 2005 [37] C. W. Lo, C. C. Wang, and M. C. Lu, “ Spatial control of heterogeneous nucleation on the superhydrophobic nanowire array,” Advanced Functional Materials, vol. 24, pp. 1211-1217, 2014 [38] J. L. Viovy, D. Beysens, and C. M. Knobler, “ Scaling description for the growth of condensation patterns on surfaces,” Physical Review A, vol. 37, pp. 4965-4970, 1988 [39] D. Beysens, “ The formation of dew,” Atmospheric Research, vol. 39, pp. 215-237, 1995 [40] F. Q. Chu and X. M. Wu, “ Fabrication and condensation characteristics of metallic superhydrophobic surface with hierarchical micro-nano structures,” Applied Surface Science, vol. 371, pp. 322-328, 2016 [41] B. Hamid Reza Talesh and S. Hamid, “ Theoretical study of stable dropwise condensation on an inclined micro/nano-structured tube,” International Journal of Refrigeration, vol. 75, pp. 141-154, 2017 [42] I. Tanasawa, J. Ochiai, “ Experimental study on dropwise condensation,” Bulletin of the Japan Society of Mechanical Engineers, vol. 16, pp. 1184-1197, 1972 [43] H. W. Hu, G. H. Tang, “ Theoretical investigation of stable dropwise condensation heat transfer on a horizontal tube,” Applied Thermal Engineering, vol. 62, pp. 671-679, 2014 [44] M. M. Garimella, S. Koppu, S. S. Kadlaskar, V. Pillutla, A. W. Choi, “Difference in growth and coalescing patterns of droplets on bi-philic surfaces with varying spatial distribution,” Journal of Colloid and Interface Science, vol. 505, pp. 1065-1073, 2017 [45] M. Alwazzan, K. Egab, B. Peng, J. Kahn, and L. Chen, “Condensation on hybrid patterned copper tubes (II): Visualization study of droplet dynamics,” International Journal of Heat and Mass Transfer, vol. 112, pp. 950-958, 2017 [46] X. H. Ma, X. D. Zhou, Z. Lan, Y. M. Li, Y. Zhang, “Condensation heat transfer enhancement in the presence of non-condensable gas using the interfacial effect of dropwise condensation,” International Journal of Heat and Mass Transfer, vol. 51, pp.1729-1737, 2008 [47] K. C. Park, P. Kim, A. Grinthal, N. He, D. Fox, J. C. Weaver, and J. Aizenberg, “ Condensation on slippery asymmetric bumps,” Nature, vol. 531, pp. 78-82, 2016
|