跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/18 20:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:白若天
研究生(外文):Ruo-Tian Bai
論文名稱:主動粒子集體運動的數值模擬
論文名稱(外文):Numerical simulation of collective motion of the active suspension
指導教授:周逸儒
指導教授(外文):Yi-Ju Chou
口試委員:江宏仁楊馥菱牛仰堯
口試委員(外文):Hong-Ren JiangFu-Ling YangYang-Yao Niu
口試日期:2016-11-11
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:中文
論文頁數:67
中文關鍵詞:固液二相流主動粒子巨觀流場聯合運動動力理論
外文關鍵詞:Solid-liquid two phase flowJanus particleMacroscopic flow fieldCollective motionKinetic theory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:284
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究可分為模擬與理論兩部分,在模擬上,我們使用固液二相流Eulerian-Lagrangian模型模擬懸浮主動粒子,在這套數值模式中,流體運動以Navier-Stokes方程式在尤拉網格上進行解析,顆粒運動則為牛頓第二運動定律,且追蹤每個顆粒的動向,在模擬設置上,對於初始狀態、邊界條件、流場面積、流體與顆粒性質都與本研究參考的實驗設置相同進行模擬,我們將模擬結果與實驗結果做比較,確認因顆粒運動會有巨觀流場的產生,且利用自相關性分析(Autocorrelation analysis),分析顆粒的同步性隨時間的變化。在理論上,以我們模擬的模式下引入動力理論(Kinetic theory)描述此研究的主動粒子,根據此理論可推導出顆粒相整體(Bulk)的數密度與速度方程式,我們將所得出之顆粒相方程式與流體動量方程式做耦合,進行線性穩定性分析,探討在何種機制下,流場會不穩定,即巨觀流場的產生。
This study is divided into two parts. In the first part, we use the Eulerian-Lagrangian model to simulate the active suspension of self-propelled small particles. The numerical model solves the momentum equations for the carrier liquid on the Eulerian meshes. The motion of the particle is governed by the Newton’s second law. We set up the simulation that is the same as the experimental set-up. We further compare the simulation results with the experimental data. The simulation results confirm the occurrence of the macroscopic flow field. We use the autocorrelation analysis to analyze the collective motion of particles. In the second part, we use the kinetic theory to obtain the governing equations of the number density and bulk velocity for groups of particles. The equations are then coupled with the Navier-Stokes equations, and the liner stability analysis is conducted for the present system.
口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vi
表目錄 viii
Chapter 1 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.2.1 主動粒子 2
1.2.2 參考實驗 4
1.2.3 參考理論與模擬 5
1.3 本文內容概述與研究工作 7
Chapter 2 理論背景與方法 8
2.1 統御方程式 10
2.2 顆粒傳輸 11
2.3 模式介紹 13
2.4 動力理論 14
Chapter 3 數值模擬之巨觀流場 17
3.1 模擬配置 17
3.2 模擬結果與實驗比較 21
3.3 流場自相關性分析 34
Chapter 4 流場穩定性分析 39
4.1 流體與顆粒之增長率 39
4.1.1 方程式之無因次化 39
4.1.2 顆粒基本狀態解 43
4.1.3 流體與顆粒耦合之微擾增長率 46
4.2 流體與顆粒之穩定性分析 49
Chapter 5 結論與未來工作 51
5.1 結論 51
5.2 未來工作 52
附錄A 53
附錄B 56
參考文獻 64
[1].Aranson, I. S., & Tsimring, L. S. (2005). Pattern formation of microtubules and motors: inelastic interaction of polar rods. Physical Review E, 71(5), 050901.
[2].Aranson, I. S., & Tsimring, L. S. (2006). Theory of self-assembly of microtubules and motors. Physical Review E, 74(3), 031915.
[3].Aranson, I. S., Sokolov, A., Kessler, J. O., & Goldstein, R. E. (2007). Model for dynamical coherence in thin films of self-propelled microorganisms. Physical Review E, 75(4), 040901.
[4].Bertin, E., Droz, M., & Grégoire, G. (2006). Boltzmann and hydrodynamic description for self-propelled particles. Physical Review E, 74(2), 022101.
[5].Bertin, E., Droz, M., & Grégoire, G. (2009). Hydrodynamic equations for self-propelled particles: microscopic derivation and stability analysis. Journal of Physics A: Mathematical and Theoretical, 42(44), 445001.
[6].Bertin, E., Baskaran, A., Chaté, H., & Marchetti, M. C. (2015). Comparison between Smoluchowski and Boltzmann approaches for self-propelled rods. Physical Review E, 92(4), 042141.
[7].Chorin, A. J. (1967). A numerical method for solving incompressible viscous flow problems. Journal of computational physics, 2(1), 12-26.
[8].Czirók, A., Stanley, H. E., & Vicsek, T. (1997). Spontaneously ordered motion of self-propelled particles. Journal of Physics A: Mathematical and General, 30(5), 1375.
[9].Cortez, R. (2001). The method of regularized Stokeslets. SIAM Journal on Scientific Computing, 23(4), 1204-1225.
[10].Cui, A., & Street, R. L. (2001). Large-eddy simulation of turbulent rotating convective flow development. Journal of Fluid Mechanics, 447, 53-84.
[11].Cui, A., & Street, R. L. (2004). Large-eddy simulation of coastal upwelling flow. Environmental Fluid Mechanics, 4(2), 197-223.
[12].Cisneros, L. H., Cortez, R., Dombrowski, C., Goldstein, R. E., & Kessler, J. O. (2007). Fluid dynamics of self-propelled microorganisms, from individuals to concentrated populations. Experiments in Fluids, 43(5), 737-753.
[13].Chou, Y. J., Gu, S. H., & Shao, Y. C. (2015). An Euler–Lagrange model for simulating fine particle suspension in liquid flows. Journal of Computational Physics, 299, 955-973.
[14].Fringer, O. B., & Street, R. L. (2003). The dynamics of breaking progressive interfacial waves. Journal of Fluid Mechanics, 494, 319-353.
[15].Howse, J. R., Jones, R. A., Ryan, A. J., Gough, T., Vafabakhsh, R., & Golestanian, R. (2007). Self-motile colloidal particles: from directed propulsion to random walk. Physical review letters, 99(4), 048102.
[16].M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1988).
[17].Saintillan, D., Shaqfeh, E. S., & Darve, E. (2006). The effect of stratification on the wave number selection in the instability of sedimenting spheroids. Physics of Fluids (1994-present), 18(12), 121503.
[18].Saintillan, D., & Shelley, M. J. (2007). Orientational order and instabilities in suspensions of self-locomoting rods. Physical review letters, 99(5), 058102.
[19].Saintillan, D., & Shelley, M. J. (2008). Instabilities, pattern formation, and mixing in active suspensions. Physics of Fluids (1994-present), 20(12), 123304.
[20].Saintillan, D., & Shelley, M. J. (2013). Active suspensions and their nonlinear models. Comptes Rendus Physique, 14(6), 497-517.
[21].Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., & Shochet, O. (1995). Novel type of phase transition in a system of self-driven particles. Physical review letters, 75(6), 1226.
[22].Walther, A., & Müller, A. H. (2008). Janus particles. Soft Matter, 4(4), 663-668.
[23].Zang, Y., Street, R. L., & Koseff, J. R. (1994). A non-staggered grid, fractional step method for time-dependent incompressible Navier-Stokes equations in curvilinear coordinates. Journal of Computational Physics, 114(1), 18-33.
[24].Zang, Y., & Street, R. L. (1995). Numerical simulation of coastal upwelling and inerfacial instability of a rotaion and stratified fluid. Journal of Fluid Mechanics, 305, 47-75.
[25].Zedler, E. A., & Street, R. L. (2001). Large-eddy simulation of sediment transport: currents over ripples. Journal of Hydraulic Engineering, 127(6), 444-452.
[26].Zedler, E. A., & Street, R. L. (2006). Sediment transport over ripples in oscillatory flow. Journal of Hydraulic Engineering, 132(2), 180-193.
[27].林子鈞 (2014). “主動非對稱粒子在二維模上的運動” 台灣大學工學院應用力學研究所碩士論文
[28].古詩弘 (2014). “固液二相懸浮微粒問題之雙向耦合數值模式” 台灣大學工學院應用力學研究所碩士論文
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top