跳到主要內容

臺灣博碩士論文加值系統

(44.220.255.141) 您好!臺灣時間:2024/11/13 09:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃成偉
研究生(外文):Cheng-Wei Huang
論文名稱:金奈米粒子群在高斯光束照射之遠距離穩定平衡聚合
論文名稱(外文):Long-range stable-equilibrium grouping of gold nanoparticles irradiated by Gaussian beam
指導教授:郭茂坤郭茂坤引用關係廖駿偉
指導教授(外文):Mao-Kuen KuoJiunn-Woei Liaw
口試日期:2017-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:51
中文關鍵詞:遠距離穩定平衡高斯光束梯度力二維平面排列三聚體
外文關鍵詞:Gaussian beamgradient forceoff-focal plane1D linear array patterns2D patternstrimerpentamerlong-range interaction
相關次數:
  • 被引用被引用:1
  • 點閱點閱:169
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文以線性極化之高斯光束(Gaussian beam)照射多顆金奈米粒子,使粒子產生表面電漿共振(surface plasmon resonance;SPR),以多重中心展開法(multiple-multipole expansions method)計算電磁場,並透過Maxwell應力張量計算粒子所受光力,去探討金奈米粒子群以一維及二維形式排列產生遠距離穩定平衡之情形。
本研究發現金奈米粒子在高斯光束照射下,所產生之梯度力其作用最顯著之處並非在光束焦平面(focal plane),而是在遠離焦平面近光束上游處,其作用大於在同一焦平面上縮小帶寬之結果,並發現一維直線排列之結構其最短穩定距離所在光束平面,穩定距離為水中波長整數倍再略短,且其值相較於先前平面波結果更短,但因光束帶寬範圍限制,產生線性排列之金球顆數有限。
相對於在焦平面處三聚體只能以動態行為存在,在光束上游處之梯度力足以將三聚體固定在環境介質中,產生二維平面排列之穩定平衡,其形狀在越往上游處會越趨近於正三角形,並分別改變介質與入射波長觀察其形狀變化,在粒子改為銀球情況下,其穩定形狀並無太大差異,而在較長波常情況下,三角形變得更為扁平。增加金球顆數至五顆後發現穩定平衡依然存在,且在金球群右側也以三角形排列存在,但其底角非常小,以至於在實驗中無法觀察到。
Using a linearly polarized (LP) Gaussian beam induced gold nanoparticles (GNPs) with stable equilibrium, fabricate 1D line array, The numerical results of MMP illustrate that the ordered 2D patterns of trimer, tetramer and pentamer of multiple GNPs of r= 100 nm can be produced in water at the off-focal plane of Gaussian beam of 800 nm, besides 1D linear array. We find that the gradient force of Gaussian beam at off-focal plane is stronger than shrinking down beam waist directly.
In 1D line array part, the stable-equilibrium distances between gold nanoparticles are closer than plane wave case but still about a wavelength. However, the quantity of GNPs are limited by the range of beam waist. The 2D stable-equilibrium patterns consisting of multiple GNPs with gaps of a wavelength could be induced by linearly polarized Gaussian beam at off-focal plane, besides the 1D array patterns. These stable-equilibrium patterns with gaps, close to a wavelength, are due to the long-range interaction of light with GNPs. Because of the gradient force of Gaussian beam as well as the optical binding force between each GNP and depend on the wavelength and waist. The orientations of these patterns are dependent on the light’s polarization. In contrast, a plane wave can only produce 1D linear array patterns, rather than the ordered 2D cluster patterns.
口試委員會審定書 i
致謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 1
第1章 緒論 3
1.1 前言 3
1.2 文獻回顧 5
1.3 本文內容 6
第2章 電磁理論與數值方法 8
2.1 高斯光束(Gaussain Beam) [34] 8
2.2 Maxwell應力張量相關電磁理論 9
第3章 高斯光束下奈米粒子之遠距離平衡 11
3.1 一維遠距離平衡與作用 13
3.1.1 雙顆金球直線排列 13
3.1.2 三顆金球直線排列 17
3.1.3 四顆金球直線排列 21
3.2 二維遠距離平衡與作用 24
3.2.1 三顆金球三角形排列 25
3.2.2 四顆金球平面排列 37
3.2.3 五顆金球平面排列 40
第4章 結論與未來展望 45
參考文獻 47
附錄 MMP擺點 51
[1]S. J. Park, T. A. Taton, and C. A. Mirkin, Array-based electrical detection of DNA with nanoparticle probes, Science 295, 1503-1505, 2002.
[2]J. J. Storhoff, A. A. Lazarides, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, and G. C. Schatz, What controls the optical properties of DNA-linked gold nanoparticle as¬semblies, J. Am. Chem. Soc. 120, 4640-4650, 2001.
[3]K. L. Kelly, A. A. Lazarides, and G. C. Schatz, Computational electromagnetics of metal nanoparticles and their aggregates, IEEE Comp. Sci. Engi. 3, 67-73, 2001.
[4]X. Huang, H. Ivan, W. Qian, A. Mostafa, Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods, J. Am. Chem. Soc. 128, 2115-2120, 2006.
[5]J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, Shape effects in plasmon resonance of individual colloidal silver nanoparticles, J. Chem. Phy. 116, 6755-6759, 2002.
[6]E. Dvjardin, L. B. Hsin, C. R. C. Wang, and S. Mann, DNA-driven self-assembly of gold nanorods, Chem. Comm. 14, 1264-1265, 2001.
[7]H. Xu, E. J. Bjerneld, and M. Kall, Spectroscopy of single hemoglobin molecule by surface-enhanced Raman scattering, Phys. Rev. Lett. 22, 4357-4360, 1999.
[8]S. S. Chang, and C. R. C. Wang, The synthesis and absorption spectra of several metal nanoparticle systems, Chem. 56, 209-222, 1998.
[9]C. F. Bohern, and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, New York, 1983.
[10]U. Kreibig, and M. Vollmer, Optical Properties of Metal Cluster, Springer Verlag, Berlin, 1995.
[11]X. Haung, Ivan H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer Cells Assemble and Align Gold Nanorods Conjugated to Antibodies to Produce Highly Ehnhanced, Sharp, and Polarized Surface Raman Spectra: A Potential Cancer Diagnostic Marker,” Nano. Lett. 7, 1591-1597, 2007
[12]V. M. Agranovich, D. L. Mills, Surface Polaritons Electromagnetic at Surfaces and Interfaces, North-Holland, New York, 1982.
[13]R. H. Ritchie, Plasma losses by fast electrons in thin films, Phys. Rev. 106, 874, 1957.
[14]W. L. Barnes, A. Dereux, T. W. Ebbesen, Surface plasmon subwavelength optics, Nature, 424,824-830, 2003.
[15]E. Burstein, Polariton, Pergamon, New York, 1974.
[16]J. P. Barton, D. R. Alexander, S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594-4602, 1989.
[17]M. L. Juan, M. Righini, R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics, 5, 349-356, 2011
[18]K. Dholakia, P. Reece, M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37, 42-55, 2007.
[19]R. Saija, P. Denti, F. Borghese, O. M. Marago, M. A. Iati, “Optical trapping calculations for metal nanoparticles. Comparison with experimental data for Au and Ag spheres.” Optics Express, 17, 10231-10241, 2009.
[20]K. C. Toussaint, M. Liu, M. Pelton, J. Pesic, M. J. Guffey, P. Guyot-Sionnest, N. F. Scherer, “Plasmon resonance-based optical trapping of single and multiple Au nanoparticles,” Optics Express, 15, 12017-12029, 2007.
[21]R. Kumar, D. S. Mehta, C. Shakher, “Clustering of optically trapped large diameter plasmonic gold nanoparticles by laser beam of hybrid-TEM11 mode,” J. Nanophotonics, 5, 053511, 2011.
[22]S. H. Simpson, S. Hanna, “Orbital motion of optically trapped particles in Laguerre-Gaussian beams,” Opt. Soc. Am. A. 27, 2061-2071, 2010.
[23]V. Demergis, E. L. Florin, Ultrastrong optical binding of metallic nanoparticles, Nano Lett. 12, 5756–5760, 2012.
[24]Z. Yan, R. A. Shah, G. Chado, S. K. Gray, M. Pelton, N. F. Scherer, Guiding spatial arrangements of silver nanoparticles by optical binding interactions in shaped light fields, ACS Nano, 7, 1790–1802, 2013.
[25]Z. Yan, U. Manna, W. Qin, A. Camire, Phi. Guyot-Sionnest, N. F. Scherer, Hierarchical Photonic Synthesis of Hybrid Nanoparticle Assemblies, J. Phys. Chem. Lett. 2013, 4, 2630−2636
[26]Z. Yan, S. K. Gray, N. F. Scherer, Potential energy surfaces and reaction pathways for light-mediated self-organization of metal nanoparticle clusters, Nat. Commun. 5, 3517
[27]郭廷祐,金銀奈米粒子之光束縛力,國立台灣大學應用力學研究所碩士論文2015
[28]趙學昱,金奈米粒子在平面波照射下的遠距離穩定與近距離結合,國立台灣大學應用力學研究所碩士論文2016.
[29]D. J. Griffiths, Introduction to Electrodynamics, Prentice Hall, New Jersey, 1996.
[30]J. A. Stratton, Electromagnetic Theory, McGraw Hill, New York, 1941.
[31]G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 25, 377-452, 1908.
[32]C. Hafner, “Beitrage zur berechnung der ausbreitung electromagneitscher wellen in zylindrischen struckturen mit hilfe des point-matching ver fahrens,” Swiss Polytechnical Institute of Technology, Switzerland, 1980.
[33]林吳駿,光誘導的雙金桿之方向性附著,國立台灣大學應用力學研究所碩士論文2015
[34]K. T. Mcdonald, “Total and frustrated reflection of a gaussian optical beam,” Joseph Henry Laboratories, Princeton University, 2009.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top