跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:45cf:c86b:e393:b18b) 您好!臺灣時間:2025/01/13 09:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃胤禎
研究生(外文):Yin-Chen Huang
論文名稱:下肢輔助外骨骼的控制系統的研發
論文名稱(外文):Development of a control system of a walking-assistive device on lower limb
指導教授:張培仁施文彬
指導教授(外文):Pei-Zen ChangWen-Pin Shih
口試委員:劉建豪施博仁徐瑋勵蔡燿全
口試委員(外文):Chien-Hao LiuPo-Jen ShihWei-Li HsuYao-Chuan Tsai
口試日期:2017-06-16
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:92
中文關鍵詞:人工皮膚仿體腦波生物力學輔具外骨骼
外文關鍵詞:Artificial phantomEEGbiomechanicsassistive devicesexoskeletoncontrol
相關次數:
  • 被引用被引用:2
  • 點閱點閱:216
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究擬研發「運用腦波控制之行走輔具平台」,旨在分析人的腦波,並使人在意念階段即可控制行走輔具,來達到更加直觀的輔助行動體驗。近幾年社會有趨向高齡化的現象發生,造成復健行走或不良於行等問題日益明顯, 如何利用輔具平台來降低醫療支出,儼然成為非常重要的研究課題。且由於意外受傷或自然老化造成所謂的看護問題,會使得社會經濟出現停滯不前,競爭力下降與勞力失衡等問題。綜上所述,受傷復健、行走輔助是一門十分重要的課題。

欲發展一人體輔具平台以減少上述問題所造成的社會經濟負擔,本研究欲從意念控制著手,為了要達到可靠的腦波訊號量測,腦電儀必須先經過校正;故提出與真實人體皮膚性質相似的人工仿體進行腦電儀的校正工作。腦波訊號是微弱的,為了能克服雜訊的干擾,將進行動態振動測試來去除走路所造成之晃動雜訊以強化腦波訊號,並進行搜尋人體想要走路的意念特徵之演算法開發。接著為確保使用者確實想進行走路的行為以及為帶給使用者最理想的行走輔助,本研究將進行下肢生物力學的走路模型建構,分析人體走路時之運動情形。最後,結合走路意念、下肢力學模型以及馬達三種模式之自動控制,完成「運用腦波控制之行走輔具平台」。
This research attempts to develop a brain-controlled system for a walking assistive device in the hope to provide more intuitive walking assistance experience. Due to the rapid growth of aging population, efficient and effective rehabilitation or walking assistance has become highly demanded. How to use assistive device to reduce medical expenses has also become a very important research issue. Care problems caused by accidental injury or natural aging can lead to stagnation in social economy, declining competitiveness, labor imbalances and so on. As above, an effective device to facilitate injury rehabilitation and walking is to be developed.
To develop an assistive device for human beings for reducing social economy loading, we intend to start from the mind control. To implement reliable brain signal measuring, EEG device must be calibrated first. We propose a calibration phantom, whose electrical and mechanical properties are similar to those of real human skin. To overcome the low signal-to-noise ratio of the EEG, a dynamic vibration test is carried out to characterize the noise caused by human walking. We also develop an algorithm to identify the intension of human walking. Based on a lower limb biomechanics model, three modes of a motor automatic control system are used to drive the walking assistant device.
誌謝 i
中文摘要 ii
ABSTRACT iii
SYMBOL TABLE iv
CONTENTS vii
LIST OF FIGURES x
LIST OF TABLES xiv
Chapter 1 Introduction 1
1.1 Background and motivation 1
1.2 Literature review 1
1.2.1 Skin phantom calibration 1
1.2.2 Overview of walking assist device 2
Chapter 2 Design of artificial skin phantom 5
2.1 Real human skin properties 5
2.2 Selection of Phantom Material 5
Chapter 3 Phantom fabrication 7
3.1 Artificial stratum corneum with sweat pores 7
3.2 Combination of stratum corneum and epidermis 15
3.3 Fabricating artificial sweat ducts 17
Chapter 4 Phantom properties test 18
4.1 Morphology tests 18
4.2 Mechanical tests 20
4.3 Electrical tests 21
Chapter 5 Structure and control theory 24
5.1 Exoskeleton mechanism 24
5.2 Circuit and servo amplifier 26
5.2.1 Motor chosen 26
5.2.2 Servo amplifier 27
5.2.3 Controller circuit 28
5.3 Motor position control theory 31
5.4 Position and speed control theory 38
5.5 Position and current control theory 41
Chapter 6 Exoskeleton control system design 45
6.1 Gait test and command statement 45
6.2 Motor position control 46
6.3 Position and speed closed loop control 50
6.4 Position and current closed loop control 54
Chapter 7 Exoskeleton results and discussions 57
7.1 Implement control system 57
7.2 Exoskeleton position control 60
7.3 Exoskeleton position and speed control 62
7.4 Exoskeleton position and torque control 64
7.5 Step response test 69
7.6 Control strategy on wearing 71
Chapter 8 Wearing exoskeleton 73
8.1 Sorting circuit package 73
8.2 Auto walking mode 74
Chapter 9 Conclusions and future work 83
9.1 Conclusions 83
9.2 Future work 84
REFERENCE 86
APPENDIX 92
1.1 Literature review on brain computer interface 92
1.2 EEG detection 92
1.3 EEG test 92
1.4 Brain wave results and discussions 92
1.5 Brain controlled system 92
1.6 Brain controlled method 92
1.7 Status determination of EEG 92
[1]A Zoss, H Kazerooni, and A Chu 2005 On the mechanical design of the Berkeley lower extremity exoskeleton (BLEEX). In: Intelligent Robots and Systems, 2005 IEEE/RSJ International Conference, pp 3132-9.
[2]Thomas J Collier, David B Kynor, Jerry Bieszczad, William E Audette, Erik J Kobylarz and Solomon Gilbert Diamond 2012 Creation of a human head phantom for testing of electroencephalography equipment and techniques IEEE Trans. Biomed. Eng. 59 2628-34.
[3]Dabrowska A K, Rotaru G M, Derler S, Spano F, Camenzind M, Annaheim S, Stampfli R, Schmid M and Rossi R M 2016 Materials used to simulate physical properties of human skin Skin Res. Technol. 22 3-14.
[4]Grosse Perdekamp M, Pollak S, Thierauf A, Strassburger E, Hunzinger M and Vennemann B 2009 Experimental simulation of reentry shots using a skin-gelatine composite model Int. J. Legal Med. 123 419-25.
[5]Gabriel C 2007 Tissue equivalent material for hand phantoms Phys. Med. Biol. 52 4205-10.
[6] http://www.robaid.com/bionics/cyberdyne-hal-5-exoskeleton-robot/
[7]Yi Long, Zhijiang Du, Lin Cong, Weidong Wang, Zhiming Zhang and Wei Dong 2017 Active disturbance rejection control based human gait tracking for lower extremity rehabilitation exoskeleton ISA Trans. 67 389-97.
[8]Gabriel Aguirre Ollinger, Umashankar Nagarajan and Ambarish Goswami 2016 An admittance shaping controller for exoskeleton assistance of the lower extremities Auton. Robot 40 701-28.
[9]Umashankar Nagarajan, Gabriel Aguirre Ollinger and Ambarish Goswami 2016 Integral admittance shaping: A unified framework for active exoskeleton control Robot. Auton. Syst. 75 310-24.
[10]Lin Liu, Steffen Leonhardt and Berno J E Misgeld 2016 Design and control of a mechanical rotary variable impedance actuator Mechatronics 39 226-36.
[11]Gong Chen, Peng Qi, Zhao Guo and Haoyong Yu 2016 Mechanical design and evaluation of a compact portable knee–ankle–foot robot for gait rehabilitation Mech. Mach. Theory 103 51-64.
[12]Sehoon Oh, Eunyoung Baek, Seok-ki Song, Samer Mohammed, Doyoung Jeon and Kyoungchul Kong 2015 A generalized control framework of assistive controllers and its application to lower limb exoskeletons Robot. Auton. Syst. 73 68-77.
[13]B Achili, T Madani, B Daachi and K Djouani 2016 Adaptive observer based on MLPNN and sliding mode for wearable robots: Application to an active joint orthosis Neurocomputing 197 69–77.
[14]Francesco Giovacchini, Federica Vannetti, Matteo Fantozzi, Marco Cempinia, Mario Cortese, Andrea Parri, Tingfang Yan, Dirk Lefeber and Nicola Vitiello 2015 A light-weight active orthosis for hip movement assistance Robot. Auton. Syst. 73 123–34.
[15]Alan T Asbeck, Kai Schmidt and Conor J Walsh 2015 Soft exosuit for hip assistance Robot. Auton. Syst. 73 102–10.
[16]Xiaoping Ouyang, Shuo Ding, Boqian Fan, Perry Y Li and Huayong Yang 2016 Development of a novel compact hydraulic power unit for the exoskeleton robot Mechatronics 38 68–75.
[17]Jessica C Selinger and J Maxwell Donelan 2016 Myoelectric control for adaptable biomechanical energy harvesting IEEE Trans. Neural Syst. Rehabil. Eng. 24 364-73.
[18]Shahid Hussain, Prashant K Jamwal, Mergen H Ghayesh and Sheng Q Xie 2017 Assist-as-needed control of an intrinsically compliant robotic gait training orthosis IEEE Trans. Ind. Electron. 64 1675-85.
[19]Tristan Vouga, Katie Z Zhuang, Jeremy Olivier, Mikhail A Lebedev, Miguel A L Nicolelis, Mohamed Bouri and Hannes Bleuler 2017 EXiO—A Brain-Controlled Lower Limb Exoskeleton for Rhesus Macaques IEEE Trans. Neural Syst. Rehabil. Eng. 25 131-40.
[20]Chao Zhang, Gangfeng Liu, Changle Li, Jie Zhao, Hongying Yu and Yanhe Zhu 2016 Development of a lower limb rehabilitation exoskeleton based on real-time gait detection and gait tracking Adv. Mech. Eng. 8(1) 1–9.
[21]Xinglai Jin, Shiqiang Zhu, Xiaocong Zhu, Qingcheng Chen and Xuequn Zhang 2017 Single-input adaptive fuzzy sliding mode control of the lower extremity exoskeleton based on human–robot interaction Adv. Mech. Eng. 9(2) 1–9.
[22]Shiqiang Zhu, Xinglai Jin, Bin Yao, Qingcheng Chen, Xiang Pei and Zhongqiang Pan 2016 Non-linear sliding mode control of the lower extremity exoskeleton based on human–robot cooperation Int. J. Adv. Robot. Syst. 13 1-10.
[23]Yi Long, Zhi-jiang Du, Weidong Wang and Wei Dong 2016 Development of a wearable exoskeleton rehabilitation system based on hybrid control mode Int. J. Adv. Robot. Syst. 13 1-10.
[24]Jun Zhu, Yu Wang, Jinlin Jiang, Bo Sun and Heng Cao 2017 Unidirectional variable stiffness hydraulic actuator for load-carrying knee exoskeleton Int. J. Adv. Robot. Syst. 14 1-12.
[25]Grimnes S and Martinsen Ø G 2008 Bioimpedance and Bioelectricity Basics, 2nd ed (New York: Academic Press) pp 93-137.
[26]B A Simpson 2003 Pain Research and Clinical Management, vol. 15, Electrical Stimulation and the Relief of pain, 1st ed. B A Simpson (Amsterdam: Elsevier) pp 17-36.
[27]Sandby-Moller J, Poulsen T and Wulf H C 2003 Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits Acta Derm. Venereol. 83 410-3.
[28]Agache P G, Monneur C, Leveque J L and De Rigal J 1980 Mechanical properties and Young''s modulus of human skin in vivo Arch. Dermatol. Res., 269 221-32.
[29]Manschot J F and Brakkee A J 1986 The measurement and modelling of the mechanical properties of human skin in vivo - II. The model J. Biomech. 19 517-21.
[30]Diridollou S, Patat F, Gens F, Vaillant L, Black D, Lagarde J M, Gall Y and Berson M 2000 In vivo model of the mechanical properties of the human skin under suction Skin Res. Technol. 6 214-21.
[31]Wilke K, Martin A, Terstegen L and Biel S S 2007 A short history of sweat gland biology Int. J. Cosmetic Sci. 29 169-79.
[32]Zhang Y, Zhang X, Fang J, Jiang S, Zhang Y, Gu D, Nelson R D and LaRue J C 2010 Application of SU-8 as the insulator toward a novel planar microelectrode array for extracellular neural recording. In: Nano/Micro Engineered and Molecular Systems (NEMS), 2010 5th IEEE International Conference, pp 395-8.
[33]http://www.microchem.com.
[34]Vieira D F, Avellaneda C O and Pawlicka A 2007 Conductivity study of a gelatin-based polymer electrolyte Electrochimica Acta 53 1404-8.
[35]Landi G, Sorrentino A, Iannace S and Neitzert H C 2015 Electrical Characterization and Modeling of a Gelatin/Graphene System Adv. Cond. Matter. Phys. 2015 5.
[36]Ghadami A, Taheri Qazvini N and Nikfarjam N 2014 Ionic conductivity in gelatin-based hybrid solid electrolytes: The non-trivial role of nanoclay J. Mater. Sci. Technol. 30 1096-102.
[37]Yen-An Chen 2016 Development of a gelatin-based artificial skin phantom for electrical treatments M.S. thesis, Dept. Mech. Eng., National Taiwan Univ., Taiwan.
[38]Nwe N, Furuike T and Tamura H 2010 Selection of a biopolymer based on attachment, morphology and proliferation of fibroblast NIH/3T3 cells for the development of a biodegradable tissue regeneration template: Alginate, bacterial cellulose and gelatin Proc. Biochem. 45 457-66.
[39]Allenby A C, Fletcher J, Schock C and Tees T F S 1969 The effect of heat, pH and organic solvents on the electrical impedance and permeability of excesed human skin Brit. J. Dermatol. 81 31-9.
[40]Dorgan S J and Reilly R B 1999 A model for human skin impedance during surface functional neuromuscular stimulation IEEE Trans. Rehabil. Eng. 7 341-8.
[41]Heng-Chia Hsu 2015 Design of walking assistive device on lower limb with fall preventing mechanism M.S. thesis, Dept. Mech. Eng., National Taiwan Univ., Taiwan.
[42]http://www.maxonmotor.ch/maxon/view/content/index.
[43]http://sine.ni.com/nips/cds/view/p/lang/zht/nid/211694.
[44]Charles L Phillips and H Troy Nagle 1998 Digital control system analysis and design, 3rd ed (New Jersey: Pearson Education) pp 27-88.
[45]Gabriele Bovi, Marco Rabuffetti, Paolo Mazzoleni and Maurizio Ferrarin 2011 A multiple-task gait analysis approach: Kinematic, kinetic and EMG reference data for healthy young and adult subjects Gait Posture 33 6–13.
[46]M Shahrokhi and A Zmorrodi Comparison of PID controller tuning methods
[47]Shao-An Tung 2016 Integration of control system strategy for a powered wheelchair driven by rim motors M.S. thesis, Dept. Mech. Eng., National Taiwan Univ., Taiwan.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top