( 您好!臺灣時間:2021/02/27 00:34
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Jing-Jie Chen
論文名稱(外文):Development of a skew corrugated microfluidic mixer and its application on concentration generator
指導教授(外文):Yu-Hsiang Hsu
外文關鍵詞:micro-electromechanical system(MEMS)Lab-on-a-chipplastic processhot embossingmicrofluidic mixingfnite element simulation
  • 被引用被引用:0
  • 點閱點閱:47
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
In this paper, we present our study on a new type of passive micromixer based on a skew corrugated configuration. Periodic geometrical barriers like washboard were built inside a microfluidic channel that alters the flow patterns transversely and vertically. The advantages of this type of mixer is its mixing barriers are at the bottom of the microfluidic channel, and it does not need a complex 2-D or 3-D configurations to perform mixing process. This micromixer can easily be fabricated by one step SU-8 photolithographic process and one molding process. Solutions to be squeezed vertically and laterally while encounter the periodic barriers. Thus, the laminar flow pattern is distorted to create mixing process. To study the mixing mechanism of the skew corrugated micromixer, we studied 4 different design parameters to optimize the mixing efficiency. Finite element simulation was conducted to study the mixing pattern and efficiency. This study also proposes a rapid hot embossing process that allows rapid reprinting of thin-film microfluidic device, which can reach 100 microns thickness. The developed technology could enable the feasibility to use the presented micromixer and thin-film plastic chip for commercialization.
致謝 i
中文摘要 ii
Abstract iii
目錄 iv
圖目錄 viii
表目錄 xii
Chapter 1 緒論 1
1.1 前言 1
1.1.1 微晶片實驗室(Lab-on-a-chip) …1
1.1.2 微製程技術(MEMS)微流體系統(Microfluidics system) 2
1.1.3 微流道混合技術(Microfluidics mixing) ………..4
1.2 研究動機與目的 5
1.3 論文架構 5
Chapter 2 微流體混合技術 7
2.1 微流體混合 7
2.1.1 擴散過程及渾沌流場 7
2.2 主動式微流道混合器 8
2.2.1 壓力驅動的主動式混合器 9
2.2.2 磁力攪拌裝置的主動式混合器 12
2.2.3 介電力干擾的主動式混合器 12
2.2.4 Zeta電位的主動式混合器 13
2.2.5 磁力擾動的主動式混合器 14
2.2.6 聲流擾動的主動式混合器 16
2.3 被動式微流道混合器 20
2.3.1 叉型流道 20
2.3.2 多入口端設計 21
2.3.3 雙層結構上下混合 22
2.3.4 圓陣列障礙物設計 23
2.3.5 三維結構混合器設計 24
2.2.6 C 型結構混合器之討論 25
2.2.7 鲱骨式混合器 27
Chapter 3 實驗微流道混合器設計 30
3.1 斜波紋微流道混合器的設計理念 30
3.2 斜波紋微流道混合器的設計結構 32
3.3 微流道混合器結構參數對混合的影響 35
Chapter 4 微流道的製程 40
4.1 微流道混合器製程 40
4.2 微流道混合器晶圓的製作 41
4.2.1 底片式光罩繪製及製作 41
4.2.2 黃光微影製程 42
4.3 微流道混合器的製作 49
4.3.1 PDMS微流道混合器的製作方式 49
4.3.2 PDMS微流道混合器的測量 50
4.3.3 微流道量測的結果 51
4.3.4 接合技術 54
Chapter 5 熱壓成型 55
5.1 熱壓成型的基本原理 55
5.2 熱壓成型的材料 55
5.2.1 熱塑性聚合物 56
5.2.2 實驗材料的選用 57
5.3 熱壓模具的設計 57
5.4 熱壓製程 58
5.4.1 熱壓系統的架設 59
5.5 熱壓實驗的參數與結果 60
Chapter 6 實驗模擬 63
6.1 COMSOL Muitiphysics 63
6.1.1 COMSOL Muitiphysics 特點 63
6.2 實驗模擬選用的模組 64
6.3 實驗混合器模擬的步驟 65
Chapter 7 模擬和實驗結果分析與討論 69
7.1 斜波紋微流道混合器模擬結果的討論 69
7.1.1 斜波紋檔塊角度對混合的影響 70
7.1.2 斜波紋檔塊長度對混合的影響 73
7.1.3 斜波紋檔塊間隙對混合的影響 76
7.1.4 斜波紋檔塊寬度對混合的影響 78
7.2 斜波紋微流道混合器實驗結果的討論 81
7.2.1 實驗架設 81
7.2.2 斜波紋微流道混合實驗 82
7.2.3 混合實驗結果量化分析 86
7.2.4 混合實驗結果分析與討論 87
Chapter 8 結論與未來展望 100
8.1 結論 100
8.2 未來展望 100

參考文獻 101
附錄 101
[1]S. Haeberle, and R. Zengerle, "Microfluidic platforms for lab-on-a-chip applications," Lab on a Chip - Miniaturisation for Chemistry and Biology, 7(9), 1094-1110 (2007).
[2]X. Xu, S. Zhang, H. Chen et al., "Integration of electrochemistry in micro-total analysis systems for biochemical assays: Recent developments," Talanta, 80(1), 8-18 (2009).
[3]http://www.itrc.narl.org.tw/Publication/Newsletter/no69/p10.php 儀科中心簡訊69期 (2005)
[4]P. Abgrall, and A. M. Gue, "Lab-on-chip technologies: Making a microfluidic network and coupling it into a complete microsystem - A review," Journal of Micromechanics and Microengineering, 17(5), R15-R49 (2007).
[5]R. Pal, M. Yang, R. Lin et al., "An integrated microfluidic device for influenza and other genetic analyses," Lab on a Chip - Miniaturisation for Chemistry and Biology, 5(10), 1024-1032 (2005).
[6]A. Folch, " Introduction to BioMEMS," (2012).
[7]G. M. Whitesides, "The origins and the future of microfluidics, " Nature, 442(7101), 368-373 (2006).
[8]D. B. Weibel, and G. M. Whitesides, "Applications of microfluidics in chemical biology," Current Opinion in Chemical Biology, 10(6), 584-591 (2006).
[9]C. Rivet, H. Lee, A. Hirsch et al., "Microfluidics for medical diagnostics and biosensors," Chemical Engineering Science, 66(7), 1490-1507 (2011).
[10]M. A. Unger, H. P. Chou, T. Thorsen et al., "Monolithic microfabricated valves and pumps by multilayer soft lithography," Science, 288(5463), 113-116 (2000).
[11]P. N. Duncan, T. V. Nguyen, and E. E. Hui, "Pneumatic oscillator circuits for timing and control of integrated microfluidics," Proceedings of the National Academy of Sciences of the United States of America, 110(45), 18104-18109 (2013).
[12]A. A. Yazdi, A. Popma, W. Wong, T. Nguyen, Y. Pan, J- Xu, "3D printing: an emerging tool for novel microfluidics and lab‑on‑a‑chip applications,"Microfluid Nanofluid (2016).
[13]Stanford Report, January 18, (2006).
[14]C.-Y. Lee, C.-L. Chang, Y.-N. Wang and L.-M. Fu, "Microfluidic Mixing: A Review,"International Journal of Molecular Sciences, 3263-3287 (2011).
[15]J.Melin, and S. R. Quake,[Microfluidic large-scale integration: The evolution of design rules for biological automation],(2007).
[16]Worgull, M., Heckele, M., "New aspects of simulation in hot embossing," Microsystem Technol, pp. 432-437 (2004)
[17]Goral, V.N., Hsieh, Y.-C., Petzold, O.N., Faris, R.A., Yuen, P.K., "Hot embossing of plastic microfluidic devices using poly(dimenthysiloxane) molds,"J.Micromech. Microeng, (2011).
[18]F.M. White, "Viscous Fluid Flow," second ed., McGraw-Hill, New York, 1991.
[19]F. Okkels, P. Tabeling," Spatiotemporal resonances in mixing of open viscous fluids, " Physical Review Letters 92 (2004) 038301.
[20]A. Dodge, A. Hountondji, M.C. Jullien, P. Tabeling,"Spatiotemporal resonances in a microfluidics system," Physical Review 92 (2004) 038301.
[21]A. Deshmukh, D. Liepmann, A.P. Pisano, Continuous micromixer with pulsatitle micropumps, Technical Digest of the IEEE Solid State Sensor and Actuator Workshop, Hilton Head Island, SC, 4–8 June, 2000, pp. 73–76.
[22]H. Suzuki and C.M. Ho, A magnetic force driven chaotic micro-mixer, Proceedings of MEMS ’02, 15th IEEE International Workshop Micro Electromechanical System, Las Vegas, NV, 20-24 January, 2002, pp. 40-43.
[23]L.H. Lu, K.S. Ryu, C. Liu, A magnetic microstirrer and array for microfluidic mixing, Journal of Microelectromechanical Systems 11 (2002) 462–469.
[24]J. Deval, P. Tabeling and C.M. Ho, A dielectrophoretic chaotic mixer, Proceedings of MEMS ’02, 15th IEEE International Workshop Micro Electromechanical System, Las Vegas, NV, 20–24 January, 2002, pp. 36–39.
[25]J.L. Lin, K.H. Lee, G.B. Lee, Active micro-mixers utilizing a gradient zeta potential induced by inclined buried shielding electrodes, Journal of Micromechanics and Microengineering 16 (2006) 757–768.
[26]J.L. Lin, K.H. Lee, G.B. Lee, Active micro-mixers utilizing a gradient zeta potential induced by inclined buried shielding electrodes, Journal of Micromechanics and Microengineering 16 (2006) 757–768.
[27]X. Yu, H.H. Bau, Complex magnetohydrodynamic low-Reynolds-number flow, Physical Review E 68 (2003) 016312.
[28]J.P. Gleeson, et al., Modelling annular micromixers, SIAM Journal of Applied Mathematics 64 (2004) 1294–1310.
[29]H.Y. Wu, C.H. Liu, A novel electrokinetic micromixer, Sensors and Actuators A 118 (2005) 107–115.
[30]L.S. Jang, S.H. Chao, M.R. Holl, D.R. Meldrum, Resonant mode-hopping micromixing, Sensors and Actuators A (2007). doi: 10.1016/j.sna.2007.04.052.
[31]J.C. Rife, M.I. Bell, J.S. Horwitz, M.N. Kabler, R.C.Y. Auyeung, W.J. Kim, Miniature valveless ultrasonic pumps and mixers, Sensors and Actuators A (2000) 135-140
[32]N. Schwesinger, T.Frank, and H. Wurmus, "A modluar microfluid system with an integrated micromixer," Journal of Micromechanics and Microengineering, vol. 6,pp.99-102 (1996).
[32]Y. Zhen, H. Goto, M. Matsumoto, R. Maeda, Active micromixer for microfluidic systems using lead- zirconate-titanate (PZT)-generated ultrasonic vibration, Electrophoresis 21 (2000) 116–119.
[33]M. Koch, H.Witt, A.G.R Evans, and A. Brunnschweiler, "Improved characterization technique for micromixers," Journal of Micromechanics and Microengineering, vol.9, pp.156-158 (1999).
[34]M.S. Munson and P. Yager, "Simple quantitative optical method for monitoring the extent of mixing applied to a novel microfluidic mixer," Analytica Chimica Acta, vol.507, pp.63-71 (2004)Journal of Micromechanics and Microengineering, vol. 14, pp.6-14 (2004).
[35]Y. Lin, G. J. Gerfen, D. L. Rousseaun, and S. R. Yeh, "Ultrafast microfluidic mixer and freeze-quenching device," Analytical Chemistry, vol.75, pp.5381-5386 (2003).
[36]S. J. Park, J. K. Kim, J. Park, S. Chung, C. Chung, and J. K. Chang, "Rapid three-dimensional passive rotation micromixer using the breakup process," Journal of Micromechanics and Microengineering, vol. 14, pp.6-14
[37]R. H. Liu, M. A. Strember, K. V. Sharp, M. G. Olsen, J. G. Santiago, R. J. Adrian, H. Aref, and D. J. Beebe, "Passive mixing in a three-dimensional serpentine microchannel," Journal of Microelectromechanical Systems, vol.9, pp.190-197 (2000).
[38]A.D. Stroock, S.K.W. Dertinger, A. Ajdari, I. Mezic, H.A. Stone, G.M. Whitesides, "Chaotic Mixer for Microchannels, " Science, Vol. 295, January 25,(2002).
[39]N-T. Nguyen and Z. Wu, "Micromixer—a review, "Journal of Micromechanics and Microengineering, February 2005, vol. 15, no. 2, pp.R1-R16(1)
[40]M. Worgull, A. Kolew, M. Heilig, M. Schneider, H. Dinglreiter, B. Rapp, "Hot embossing of high performance polymers," Microsyst Technol 17:585–592,(2011).
[41]N. Drakos, Computer Based Learning Unit, University of Leeds. (1996)
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔