|
1.Basu , D., et al., A Prospective Study of the Value of Monitoring Heparin Treatment with the Activated Partial Thromboplastin Time, in New England Journal of Medicine. 1972. p. 324-327. 2.Investigators, B.A.A.T.f.A.F., The effect of low-dose warfarin on the risk of stroke in patients with nonrheumatic atrial fibrillation. N Engl j Med, 1990. 323(22): p. 1505-1511. 3.http://www.who.int/mediacentre/factsheets/fs310/en/. 4.Heneghan, C., et al., Self-monitoring of oral anticoagulation: a systematic review and meta-analysis. The Lancet, 2006. 367(9508): p. 404-411. 5.Lacy, C., L. Armstrong, and M. Goldman, Drug information handbook 2002-2003. 2002. 6.Plesch, W., et al., Results of the performance verification of the CoaguChek XS system. Thrombosis research, 2008. 123(2): p. 381-389. 7.Harris, L.F., V. Castro-López, and A.J. Killard, Coagulation monitoring devices: Past, present, and future at the point of care. TrAC Trends in Analytical Chemistry, 2013. 50: p. 85-95. 8.McMichael, M.A. and S.A. Smith, Viscoelastic coagulation testing: technology, applications, and limitations. Veterinary clinical pathology, 2011. 40(2): p. 140-153. 9.Schlimp, C.J., et al., Rapid measurement of fibrinogen concentration in whole blood using a steel ball coagulometer. The journal of trauma and acute care surgery, 2015. 78(4): p. 830. 10.Vikinge, T.P., et al., Comparison of surface plasmon resonance and quartz crystal microbalance in the study of whole blood and plasma coagulation. Biosensors and Bioelectronics, 2000. 15(11): p. 605-613. 11.Karon, B.S., Why is everyone so excited about thromboelastrography (TEG)? Clinica Chimica Acta, 2014. 436: p. 143-148. 12.Luddington, R., Thrombelastography/thromboelastometry. International Journal of Laboratory Hematology, 2005. 27(2): p. 81-90. 13.Hett, D., et al., Sonoclot analysis. British journal of anaesthesia, 1995. 75(6): p. 771-776. 14.Ganter, M.T. and C.K. Hofer, Coagulation monitoring: current techniques and clinical use of viscoelastic point-of-care coagulation devices. Anesthesia & Analgesia, 2008. 106(5): p. 1366-1375. 15.Wee, K.W., et al., Novel electrical detection of label-free disease marker proteins using piezoresistive self-sensing micro-cantilevers. Biosensors and Bioelectronics, 2005. 20(10): p. 1932-1938. 16.Loui, A., et al., Chemical vapor discrimination using a compact and low-power array of piezoresistive microcantilevers. Analyst, 2008. 133(5): p. 608-615. 17.Oden, P., et al., Viscous drag measurements utilizing microfabricated cantilevers. Applied physics letters, 1996. 68(26): p. 3814-3816. 18.Wilson, T.L., G.A. Campbell, and R. Mutharasan, Viscosity and density values from excitation level response of piezoelectric-excited cantilever sensors. Sensors and Actuators A: Physical, 2007. 138(1): p. 44-51. 19.Weitzel, N., G. Gravlee, and T. Seres, Laboratory based tests of blood clotting. Monitoring in Anesthesia and Perioperative Care, 2011. 1: p. 291-307. 20.張育禎, 振動式自感測微懸臂梁應用於凝血反應之監測. 國立台灣大學工學院應用力學研究所碩士論文, 2013. 21.Smith, C.S., Piezoresistance effect in germanium and silicon. Physical review, 1954. 94(1): p. 42. 22.Huang, S., et al., A high-performance micromachined piezoresistive accelerometer with axially stressed tiny beams. Journal of Micromechanics and Microengineering, 2005. 15(5): p. 993. 23.French, P. and A. Evans, Polycrystalline silicon as a strain gauge material. Journal of Physics E: Scientific Instruments, 1986. 19(12): p. 1055. 24.Su, Y., A. Evans, and A. Brunnschweiler, Micromachined silicon cantilever paddles with piezoresistive readout for flow sensing. Journal of Micromechanics and Microengineering, 1996. 6(1): p. 69. 25.Kanda, Y., A graphical representation of the piezoresistance coefficients in silicon. IEEE Transactions on electron devices, 1982. 29(1): p. 64-70. 26.Barlian, A.A., et al., Semiconductor piezoresistance for microsystems. Proceedings of the IEEE, 2009. 97(3): p. 513-552. 27.Young, W.C. and R.G. Budynas, Roark''s formulas for stress and strain. Vol. 7. 2002: McGraw-Hill New York. 28.Thaysen, J., Cantilever for bio-chemical sensing integrated in a microliquid handling system. 2001, Technical University of DenmarkDanmarks Tekniske Universitet, Department of Micro-and NanotechnologyInstitut for Mikro-og Nanoteknologi. 29.辜煜夫, 壓阻式微懸臂梁生化感測系統溫度效應之量測, 消除與應用. 臺灣大學應用力學研究所學位論文, 2009: p. 1-190. 30.莊達人, VLSI製造技術. 2002. 31.French, P., Polysilicon: a versatile material for microsystems. Sensors and actuators A: Physical, 2002. 99(1): p. 3-12. 32.French, P. and A. Evans, Piezoresistance in polysilicon and its applications to strain gauges. Solid-State Electronics, 1989. 32(1): p. 1-10. 33.李信節, 多重感測元件之高性能壓阻式微懸臂梁生化感測器 之設計, 製程與特性分析. 臺灣大學應用力學研究所學位論文, 2010: p. 1-151. 34.Liu, X., et al. Temperature characteristics of polysilicon piezoresistive nanofilm depending on film structure. in Nanoelectronics Conference, 2008. INEC 2008. 2nd IEEE International. 2008. IEEE. 35.This condition can be satisfied even for beams with salient edges, since in practice the radius of curvature of such edges is never zero. 36.Lifshitz, L.D.L.a.E.M., Theory of Elasticity. Pergamon, Oxford, 1970. 37.Sader, J.E., Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. Journal of applied physics, 1998. 84(1): p. 64-76. 38.Panton, R.L., Incompressible Flow, 2nd Edition. Wiley-Interscience, New York, 1996. 39.Eysden, C.A.V. and J.E. Sader, Frequency response of cantilever beams immersed in compressible fluids with applications to the atomic force microscope. Journal of Applied Physics, 2009. 106(9): p. 094904. 40.Batchelor, G.K., Fluid Dynamics. Cambridge University Press, Cambridge, UK, 1974. 41.Lifshitz, L.D.L.a.E.M., Fluid Mechanics. Pergamon, Oxford, 1975. 42.Chu, W.-H., Tech. Rep. No. 2, DTMB, Contract NObs-86396(X). Southwest Research Institute, San Antonio, Texas, 1963. 43.Labs, S.V., Forced Vibration of a Cantilever Beam (Continuous System). 2011. 44.Feshbach, P.M.M.a.H., Methods of Theoretical Physics. McGrawHill, New York, 1953. 45.林豪駸, 利用快速傅立葉轉換系統分析自感測壓阻式微懸臂梁於凝血反應之監測. 臺灣大學應用力學研究所學位論文, 2015: p. 1-86. 46.Cranch, G., et al., Low frequency driven oscillations of cantilevers in viscous fluids at very low Reynolds number. Journal of Applied Physics, 2013. 113(19): p. 194904. 47.Kirstein, Stefan, Michael Mertesdorf, and Monika Schönhoff. "The influence of a viscous fluid on the vibration dynamics of scanning near-field optical microscopy fiber probes and atomic force microscopy cantilevers." Journal of Applied Physics 84.4 (1998): 1782-1790. 48. MLAChen, Shoei-Sheng. Flow-induced vibration of circular cylindrical structures. No. ANL-85-51. Argonne National Lab., IL (USA), 1985.
|