(3.235.108.188) 您好!臺灣時間:2021/03/07 21:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:呂彥樓
研究生(外文):Yen-Lou Lu
論文名稱:金奈米殼核粒子結合增益介質之電漿子超共振
論文名稱(外文):Plasmonic Super-Resonance of Gold Nanoshell withGain Medium
指導教授:郭茂坤郭茂坤引用關係廖駿偉
指導教授(外文):Mao-Kuen KuoJiunn-Woei Liaw
口試日期:2017-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:115
中文關鍵詞:受激輻射表面電漿子放大器增益介質Mie理論並矢Green’s函數Lorentz模型超共振奈米雷射
外文關鍵詞:spasergain mediaMie theorydyadic Green’s functionsLorentz modelsuper-resonancenanolaser
相關次數:
  • 被引用被引用:0
  • 點閱點閱:49
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文研究受激輻射表面電漿子放大器,如金奈米殼球和金核殼球等結構,通過增益介質如染料分子或量子點摻入二氧化矽所在之核或殼層。我們通過使用Mie理論求解在平面波照射下的響應來研究奈米殼結構的超共振,此外又使用並矢Green’s函數研究由電偶極子激發奈米殼結構的響應。增益介質其與波長相關的相對介電係數則由Lorentz模型建立。由奈米殼結構的平面波響應,如散射和吸收截面積,可以確立其超共振現象,也代表此受激輻射表面電漿子放大器可以應用於奈米雷射。
In the paper, a spaser (surface plasmon amplification by stimulated emission of radiation) has been proposed. For example, Au nanoshells containing gain medium (e.g. dyes or quantum dots) embedded in the silica core or coreshells coated by a gain medium. We study the super-resonance of nanoshell by using the Mie theory for their responses under the irradiation of plane wave. Moreover, the responses of these nanostructures excited by an electric dipole will be studied using the dyadic Green’s functions. The wavelength-dependent permittivity of the gain medium is modelled by Lorentz model. From the plane-wave responses (scattering and absorption cross sections) of the nanostructure, we can determine the super-resonance behavior. It implies that this spaser can be used for the application of nanolaser.
誌謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 1
第一章 緒論 4
1.1 前言 4
1.2 文獻回顧 5
1.3 本文內容 10
第二章 介質參數之假設與建立 12
2.1 摻入增益介質之介電係數的假設 12
2.2 Lorentz模型擬合發射光譜與建立摻入增益介質之介電係數 14
2.3 散射截面積效率、吸收截面積效率 15
2.4 輻射效率 17
第三章 數值結果與分析討論 19
3.1 奈米殼散射體 21
3.1.1 金奈米殼球 22
3.1.1.1 平面波波源 22
3.1.1.2 電偶極波源 56
3.1.2 三層(three-layer)金奈米殼球 59
3.2 殼核散射體 64
3.2.1 金核殼球 65
3.2.1.1 平面波波源 65
3.2.1.2 電偶極波源 90
3.2.2 金核殼桿 93
第四章 結論與未來展望 99
4.1 結論 99
4.2 未來展望 100
附錄A Lorentz模型參數 101
附錄B MMP擺點 110
參考文獻 111
[1]S. S. Chang, and C. R. C. Wang, “The synthesis and absorption spectra of several metal nanoparticle systems,” Chemical 56, 209-222, 1998.
[2]H. Xu, E. J. Bjerneld, and M. Käll, “Spectroscopy of single hemoglobin molecule by surface-enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357-4360, 1999.
[3]J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755-6759, 2002.
[4]J. B. González-Diaz, A. Garcia-Martin, J. M. Garcia-Martin, A. Cebollada, G. Armelles, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4(2), 202-205, 2008.
[5]G. X. Du, T. Mori, M. Suzuki, S. Saito H. Fukuda, and M. Takahashi, “Evidence of localized surface plasmon enhanced magneto-optical effect in naodisk array,” Appl. Phys. Lett. 96(8), 081915, 2010.
[6]D. J. Bergman, and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402, 2003.
[7]A. A. Govyadinov, V. A. Podolskiy, and M. A. Noginov, “Active metamaterials: sign of refractive index and gain-assisted dispersion management,” Appl. Phys. Lett. 91(19), 191103, 2007.
[8]M. Wegener, J. L. Garcia-Pomar, C. M. Soukoulis, N. Meinzer, M. Ruther, and S. Linden, “Toy model for plasmonic metamaterial resonances coupled to two-level system gain,” Opt. Express 16(24), 19785-19798, 2008.
[9]S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735-741, 2010.
[10]J. Skaar, “Causality and its implications for passive and active media,” arxiv preprint arxiv: 1008, 2874, 2010.
[11]D. G. Baranov, E. S. Andrianov, A. P. Vinogradov, and A. A. Lisyansky, “Exactly solvable toy model for surface plasmon amplification by stimulated emission of radiation,” Opt. Express 21(9), 10779-10791, 2013.
[12]J. A. Gordon, “Coated nano particles for optical metamaterials and nano-photonic applications,” The University of Arizona, 2008.
[13]Y. Jin, and X. Gao, “Plasmonic fluorescent quantum dots,” Nat. Nanotechnol. 4(9), 571-576, 2009.
[14]M. I. Stockman, “The spaser as a nanoscale quantum generator and ultrafast amplifer,” J. Opt. 12(2), 024004, 2010.
[15]M. I. Stockman, “Spasers explained,” Nat. Photon. 2(6), 327-329, 2008.
[16]X. Miao, I. Brener, and T. S. Luk, “Nanocomposite plasmonic fluorescence emitters with core/shell configurations,” J. Opt. Soc. Am. B 27(8), 1561-1570, 2010.
[17]Q. Wang, and S. T. Ho, “A numerical simulation of nanodisk semiconductor-plasmonic laser using BOR-FDTD with a multilevel gain medium model,” IEEE Photonics Journal 4(6), 2346-2352, 2012.
[18]S. D. Campbell, “Studies of passive and active plasmonic core-shell nanoparticles and their applications,” The University of Arizona, 2013.
[19]S. M. Jiang, D. J. Wu, X. W. Wu, and X. J. Liu, “Enormous enhancement of electric field in active gold nanoshells,” Chin. Phys. B 23(4), 047807, 2014.
[20]I. Liberal, I. Ederra, R. Gonzalo, and R. W. Ziolkowski, “Magnetic dipole super-resonances and their impact on mechanical forces at optical frequencies,” Opt. Express 22(7), 8640-8653, 2014.
[21]X. Fan, W. Zheng, and D. J. Singh, “Light scattering and surface plasmons on small spherical particles,”Light: Science and Applications 3(6), e179, 2014.
[22]Y. Tao, Z. Guo, A. Zhang, J. Zhang, B. Wang, and S. Qu, “Gold nanoshells with gain-assisted silica core for ultra-sensitive bio-molecular sensors,” Opt. Commun. 349, 193-197, 2015.
[23]S. Arslanagić, and R. W. Ziolkowski, “Influence of active nano particle size and material composition on multiple quantum emitter enhancements: their enhancement and jamming effects,” Progress in Electromagnetics Research 149, 85-99, 2014
[24]S. Arslanagić, and R. W. Ziolkowski, “Nano-sensing of the orientation of fluorescing molecules with active coated nano-particles,” Phot. Nano. Fund. Appl. 13, 80-88, 2015.
[25]H. Zhang, J. Zhou, W. Zou, and M. He, “Surface plasmon amplification characteristics of an active three-layer nanoshell-based spaser,” J. Appl. Phys. 112(7), 074309, 2012.
[26]D. J. Wu, Y. Cheng, X. W. Wu, and X. J. Liu, “An active metallic nanomatryushka with two similar super-resonances,” J. Appl. Phys. 116(1), 013502, 2014.
[27]B. Ji, E. Giovanelli, B. Habert, P. Spinicelli, M. Nasilowski, X. Xu, N. Lequeux, J. P. Hugonin, F. Marquier, J. J. Greffet, and B. Dubertret, “Non-blinking quantum dot with a plasmonic nanoshell resonator,” Nat. Nanotechnol. 10(2), 170-175, 2015.
[28]M. Yu, J. Song, H. Niu, and J. Qu, “Quadrupole plasmon lasers with a super low threshold based on an active three-layer nanoshell structure,” Plasmonics 11(1), 231-239, 2016.
[29]R. Ruppin, “Nanoshells with a gain layer: the effects of surface scattering,” J. Opt. 17(12), 125004, 2015.
[30]D. J. Wu, X. W. Wu, Y. Cheng, B. B. Jin, and X. J. Liu, “Dual-frequency plasmon lasing modes in active three-layered bimetallic Ag/Au nanoshells,” Appl. Phys. Lett. 107(19), 191909, 2015.
[31]L. Zhang, J. Zhou, H. Zhang, T. Jiang, and C. Lou, “Ultra-strong surface plasmon amplification characteristic of a spaser based on gold-silver core-shell nanorods,” Opt. Commun. 338, 313-321, 2014.
[32]Y. Tao, Z. Guo, Y. Sun, F. Shen, X. Mao, W. Wang, Y. Li, Y. Liu, X. Wang, and S. Qu, “Sliver spherical nanoshells coated gain-assisted ellipsoidal silica core for low-threshold surface plasmon amplification,” Opt. Commun. 355, 580-585, 2015.
[33]N. Arnold, K. Piglmayer, A. V. Kildishev, and T. A. Klar, “Spasers with retardation and gain saturation: electrodynamic description of fields and optical cross-sections,” Optical Materials Express 5(11), 2546-2577, 2015.
[34]H. Q. Yu, S. M. Jiang, and D. J. Wu, “Efficient surface plasmon amplification in gain-assisted silver nanotubes and associated dimers”, J. Appl. Phys. 117(15), 153101, 2015.
[35]江崇煜,“金屬奈米殼之電漿子模態分析”,國立臺灣大學應用力學研究所碩士論文, 2011。
[36]陳皇志,“單顆和雙顆多層奈米粒子之表面電漿子模態分析與對螢光分子的螢光增益之研究”,國立臺灣大學應用力學研究所碩士論文, 2013。
[37]M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110-1112, 2009.
[38]E. Desurvire, “Erbium-doped fiber amplifiers: principles and applications,” Wiley-Interscience 2002.
[39]A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, “Tables of Integral Transforms: Vol. : 2,” McGraw-Hill Book Company, Incorporated, 1954.
[40]M. O’Donnell, E. T. Jaynes, and J. G. Miller, “Kramers-Kronig relationship between ultrasonic attenuation and phase velocity,” J. Acoust. Soc. Am. 69(3), 696-701, 1981.
[41]C. F. Bohren, and D. R. Huffman, “Absorption and scattering of light by small particles,” Wiley & Sons, 2008.
[42]M. Thomas, J. J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85(17), 3863-3865, 2004.
[43]P. B. Johnson, and R. W. Christy, “Optical Constants of the Noble Metals,” Phy. Rev. B. 6(12), 4370-4379, 1972.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔