跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/14 20:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾健瑋
研究生(外文):Jian-Wei Tseng
論文名稱:全新螺桿式粒材進料之聚醚醚酮積層製造機臺開發與應用
論文名稱(外文):On the development of a novel pellet-based and screw-typed 3D printer for PEEK material and its applications
指導教授:王安邦王安邦引用關係
指導教授(外文):An-Bang Wang
口試日期:2017-07-04
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:132
中文關鍵詞:積層製造聚醚醚酮螺桿式粒材進料擠出高信賴度列印機臺抗化學性微反應器應用
外文關鍵詞:Additive manufacturingpolyether-ether-ketone (PEEK)pellet-based and screw-typed extrusionhighly reliability 3D printerchemical resistant micro-reactor applications
相關次數:
  • 被引用被引用:0
  • 點閱點閱:352
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
積層製造技術又稱三維積層或立體列印(3D printing),一直被認為是未來科技發展的一大趨勢備受全球矚目,而熔融沉積成型(Fused deposition molding, FDM) 更是其中最被普遍應用、深具經濟價值之技術,其技術在於以擠出方式將半熔融材料列印於基板以實現各式結構。儘管其具有成本低、製程簡單、快速完成等優勢,但其製程仍受諸多材料選擇之限制,例如無法用於具有生物相容性、高機械強度、抗化學性、高熔點及高黏度(>100,000 cP)之聚醚醚酮(polyetheretherketone, PEEK)高分子材料。故本研究旨在開發一可商用FDM型PEEK 3D列印機。
目前市售之FDM型3D列印機臺,主要皆以線材送料式擠出,此送料方式在高速列印時易有噴嘴堵塞之問題及線材不穩定挫曲的情形發生(因熔料逆流所導致),從而限制其列印效率。因此,本研究捨棄線材送料方式,率先成功開發一全新粒材直接進料、輔以射出成型螺桿式擠出之聚醚醚酮3D列印機臺,其特點在於整合供料擠線製程及提供更大穩定扭力,以根本解決熔料逆流與列印不穩定之瓶頸。目前機臺成功突破一般FDM不利快速列印之侷限(一般上限僅約50 mm/s),在400 μm噴嘴下,可進行370 mm/s之高速列印(列印速度提升7.4倍),且流量誤差控制於3%下。而憑藉此系統設計之優越與穩定性,本文所列印出的產品,能大幅有效抑制試片內部的孔洞因製程缺陷之產生機率並強化機械強度,其機械強度測試在文獻中已首度可達塊材之96%! 而為擴大機臺功能,本研究也開發出可替換式面型列印模組,用以大面積快速列印,列印出之最小膜厚為58 μm,表面粗糙度(Ra)均可達4 nm以下。
而為展現此PEEK列印機臺於微流體平臺應用的特殊價值,本文特別測試了需抗化學反應的光調控分子合成實驗,所製作之微反應器成功證實可改善傳統耗時、低產率(約61%)之批次製造,達到高效反應(95%)與連續生產之成果。最後,本研究也成功列印出高深寬比空心101及內部網狀通道椎間融合器。
Additive manufacturing (AM), also known as 3D printing, has been recognized as the next big thing of future technology in the recent years. Among all the related methods, fused deposition molding (FDM) is one of the most economical way, which extrudes the semi-molten material onto the substrate to construct artificial structures. Despite it has several benefits including of low cost, user-friendly, and rapid printing, it still suffers from a severe limitation on printing material, especially for the high viscous polymer (> 100,000 cP) such as polyetheretherketone (PEEK) with biocompatible, high mechanical strength, and chemical resistant properties. To this end, this study aims for developing the commercial 3D printer based on FDM for PEEK material.
In addition, commercial available FDM 3D printer mainly uses the mechanism of filament feeding, which has drawbacks of back-flow induced nozzle clogging and filament bulking phenomenon in high speed printing process, thus restricting its printing efficiency. Therefore, in this study, skipping the commonly used filament feeding in FDM for the first time, we’ve successfully developed pellet-based and screw-typed 3D printer for PEEK material in the injection molding concept with features of easy operation (saving one process on pellet to filament) and maintenance (no more nozzle clogging). Furthermore, the current apparatus supports the printing speed up to 370 mm/s with flow rate error controlled within 3% while conventional method is only 50 mm/s in 400 μm nozzle diameter. On the basis of this approach, we have successfully printed some specimens and the porosity induced by process imperfection can be greatly inhibited and the mechanical strength can be enhanced up to 96% in tensile strength compared to the bulk material in the first time. In addition, we also developed an exchangeable plane-typed printing head for large-area printing. Currently, the minimum dry film has achieved the maximum precision of 58 μm and the best surface roughness Ra has achieved in 1.56 nm.
To further demonstrates PEEK printer’s superiorities in the application of microfluidic device. This study also designed and printed the chemical resistant micro-reactor for the synthesis of liquid crystal and optically active molecules. The results show a higher yield (95%) and reaction velocity (180 times) than the conventional batch method (61%). Finally, we have also successfully printed high aspect ratio structure (hollowed Taipei 101) and intervertebral cage with interconnected channel.
目錄
誌謝 I
國立台灣大學碩士學位論文口試委員會審定書 II
中文摘要 III
Abstract V
目錄 VII
圖目錄 X
表目錄 XVII
符號說明 XVIII
第1章 緒論 1
1.1 前言 1
1.2 文獻回顧 1
1.2.1 三維積層製造技術發展 1
1.2.2 聚醚醚酮於積層製造之產業應用 13
1.2.3 聚醚醚酮 (Polyether ether ketone, PEEK) 13
1.2.4 多孔製程技術 15
1.2.5 3D列印微反應器 23
1.3 研究動機 27
第2章 實驗儀器與方法 29
2.1 實驗設備 29
2.1.1 位移平臺控制系統 29
2.1.2 溫度控制系統 30
2.1.3 PEEK列印系統 32
2.1.4 力學測試設備 34
2.1.5 PEEK微流裝置加工設備 37
2.1.6 工作流體調配裝置 40
2.1.7 流體傳輸裝置 40
2.1.8 顯影裝置 42
2.1.9 微反應產物分析設備 45
2.2 實驗步驟與方法 46
2.2.1 推桿擠出式積層製造機臺架設與列印參數建立 46
2.2.2 螺桿擠出式積層製造機臺架設與列印製程 48
2.2.3 微反應實驗與分析 49
第3章 實驗結果與討論 51
3.1 加熱基板材質選擇 51
3.1.1 熔融PEEK與不同材質之基板溫度介面粘附性 51
3.2 熔融PEEK列印參數設定 53
3.2.1 列印基板溫度設定 53
3.3 推桿式積層製造機臺建構及列印 56
3.3.1 推桿式擠出機臺設計與建構 56
3.3.2 塗佈視窗測試 56
3.3.3 推桿式積層製造列印成品 59
3.4 螺桿式擠出機構之設計建構及列印 63
3.4.1 擠出螺桿幾何設計 63
3.4.2 螺桿壓縮比 66
3.4.3 螺稜剪力分析 67
3.4.4 熱學模擬分析 69
3.4.5 螺桿擠出式積層製造機臺建構結果 83
3.4.6 加熱測試實驗結果 85
3.4.7 擠出PEEK流量穩定性測試 86
3.4.8 螺桿式擠出機之實作成品 88
3.4.9 列印成品之機械性質測試 90
3.5 微反應器研究 105
3.5.1 微反應器材料分析 106
3.5.2 微反應前導實驗 108
3.5.3 PEEK-3DP微反應器開發 111
3.5.3.1 一般微流道列印及測試 112
3.5.3.2 新型流道的列印及測試 119
第4章 結論與未來展望 123
4.1 結論 123
4.1.1 加熱基板溫度選擇 123
4.1.2 可替換式狹縫列印頭 123
4.1.3 螺桿擠出機構 124
4.1.4 噴嘴溫度對機械性質探討 124
4.1.5 抗化學性微反應器實驗 124
4.2 未來展望 125
參考資料 126
作者簡介 131

參考資料
[1]H. N. Chia and B. M. Wu, "High-resolution direct 3D printed PLGA scaffolds: print and shrink," Biofabrication, vol. 7, p. 015002, 2014.
[2]F. Marga, K. Jakab, C. Khatiwala, B. Shepherd, S. Dorfman, B. Hubbard, et al., "Toward engineering functional organ modules by additive manufacturing," Biofabrication, vol. 4, p. 022001, 2012.
[3]Y. Tan, D. J. Richards, T. C. Trusk, R. P. Visconti, M. J. Yost, M. S. Kindy, et al., "3D printing facilitated scaffold-free tissue unit fabrication," Biofabrication, vol. 6, p. 024111, 2014.
[4]D. Ahn, J.-H. Kweon, J. Choi, and S. Lee, "Quantification of surface roughness of parts processed by laminated object manufacturing," Journal of Materials Processing Technology, vol. 212, pp. 339-346, 2012.
[5]P. Dudek, "FDM 3D printing technology in manufacturing composite elements," Archives of Metallurgy and Materials, vol. 58, pp. 1415-1418, 2013.
[6]L. Galantucci, F. Lavecchia, and G. Percoco, "Experimental study aiming to enhance the surface finish of fused deposition modeled parts," CIRP Annals-Manufacturing Technology, vol. 58, pp. 189-192, 2009.
[7]P. M. Pandey, N. V. Reddy, and S. G. Dhande, "Improvement of surface finish by staircase machining in fused deposition modeling," Journal of materials processing technology, vol. 132, pp. 323-331, 2003.
[8]A. K. Sood, R. Ohdar, and S. Mahapatra, "Improving dimensional accuracy of fused deposition modelling processed part using grey Taguchi method," Materials & Design, vol. 30, pp. 4243-4252, 2009.
[9]M. P. Lee, G. J. Cooper, T. Hinkley, G. M. Gibson, M. J. Padgett, and L. Cronin, "Development of a 3D printer using scanning projection stereolithography," Scientific reports, vol. 5, 2015.
[10]T. F. Pereira, M. F. Oliveira, I. A. Maia, J. V. Silva, M. F. Costa, and R. M. Thiré, "3D Printing of Poly (3‐hydroxybutyrate) Porous Structures Using Selective Laser Sintering," in Macromolecular Symposia, 2012, pp. 64-73.
[11]L. Bechthold, V. Fischer, A. Hainzlmaier, D. Hugenroth, L. Ivanova, K. Kroth, et al., "3D printing—a qualitative assessment of applications, recent trends and the technology’s future potential," Studien zum deutschen innovations system. EFI, Berlin, 2015.
[12]M. Dastbaz, C. Pattinson, and B. Akhgar, Green information technology: A sustainable approach: Morgan Kaufmann, 2015.
[13]"ASTM Standard Terminology for Additive Manufacturing Technologies Designation: F2792-12a."
[14]I. J. Gausemeier, M. Wall, and S. Peter, "Thinking ahead the Future of Additive Manufacturing – Exploring the Research Landscape," ed: Paderborn, 2013.
[15]L. Elomaa, S. Teixeira, R. Hakala, H. Korhonen, D. W. Grijpma, and J. V. Seppälä, "Preparation of poly (ε-caprolactone)-based tissue engineering scaffolds by stereolithography," Acta Biomaterialia, vol. 7, pp. 3850-3856, 2011.
[16]J. R. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A. R. Johnson, D. Kelly, et al., "Continuous liquid interface production of 3D objects," Science, vol. 347, pp. 1349-1352, 2015.
[17]"http://www.rabbitform.pl/mjp-multijet-printing-mjm-multijet-modeling/."
[18]E. Sachs, M. Cima, and J. Cornie, "Three-dimensional printing: rapid tooling and prototypes directly from a CAD model," CIRP Annals-Manufacturing Technology, vol. 39, pp. 201-204, 1990.
[19]"http://www.risonprototype.com/printing-technologies-types-and-how-works-a-25.html."
[20]M. Vaezi and C. K. Chua, "Effects of layer thickness and binder saturation level parameters on 3D printing process," The International Journal of Advanced Manufacturing Technology, vol. 53, pp. 275-284, 2011.
[21]"http://itac.nyc/infographic-the-power-of-3d-printing-in-manufacturing-an-illustrated-guide/."
[22]S. M. Kurtz, "An Overview of PEEK Biomaterials," PEEK Biomaterials Handbook, pp. 1-8, 2011.
[23]VICTREX®, "PEEK 90G."
[24]VICTREX®, "PEEK 450G."
[25]S. Green, "Compounds and composite materials," PEEK Biomaterials Handbook, p. 23, 2011.
[26]N. Zhu and X. Chen, Biofabrication of tissue scaffolds: INTECH Open Access Publisher, 2013.
[27]D. Sin, X. Miao, G. Liu, F. Wei, G. Chadwick, C. Yan, et al., "Polyurethane (PU) scaffolds prepared by solvent casting/particulate leaching (SCPL) combined with centrifugation," Materials Science and Engineering: C, vol. 30, pp. 78-85, 2010.
[28]L. J. Jacobs, M. F. Kemmere, and J. T. Keurentjes, "Sustainable polymer foaming using high pressure carbon dioxide: a review on fundamentals, processes and applications," Green Chemistry, vol. 10, pp. 731-738, 2008.
[29]K.-W. D. Lee, P. K. Chan, and X. Feng, "Morphology development and characterization of the phase-separated structure resulting from the thermal-induced phase separation phenomenon in polymer solutions under a temperature gradient," Chemical engineering science, vol. 59, pp. 1491-1504, 2004.
[30]A. R. Siddiq and A. R. Kennedy, "Porous poly-ether ether ketone (PEEK) manufactured by a novel powder route using near-spherical salt bead porogens: Characterisation and mechanical properties," Materials Science and Engineering: C, vol. 47, pp. 180-188, 2015.
[31]A. J. Hoyt, C. M. Yakacki, R. S. Fertig, R. D. Carpenter, and C. P. Frick, "Monotonic and cyclic loading behavior of porous scaffolds made from poly (para-phenylene) for orthopedic applications," Journal of the mechanical behavior of biomedical materials, vol. 41, pp. 136-148, 2015.
[32]N. T. Evans, F. B. Torstrick, C. S. Lee, K. M. Dupont, D. L. Safranski, W. A. Chang, et al., "High-strength, surface-porous polyether-ether-ketone for load-bearing orthopedic implants," Acta biomaterialia, vol. 13, pp. 159-167, 2015.
[33]G. L. Converse, T. L. Conrad, and R. K. Roeder, "Mechanical properties of hydroxyapatite whisker reinforced polyetherketoneketone composite scaffolds," Journal of the mechanical behavior of biomedical materials, vol. 2, pp. 627-635, 2009.
[34]M. Jarman-Smith, M. Brady, S. M. Kurtz, N. M. Cordaro, and W. R. Walsh, "Porosity in polyaryletheretherketone," PEEK Biomaterials Handbook, vol. 181, p. 4, 2011.
[35]A. Boschetto, L. Bottini, F. Campana, L. Consorti, and D. Pilone, "Investigation via morphological analysis of aluminium foams produced by replication casting," Frattura ed Integritá Strutturale, p. 1, 2013.
[36]T. Subbiah, G. Bhat, R. Tock, S. Parameswaran, and S. Ramkumar, "Electrospinning of nanofibers," Journal of Applied Polymer Science, vol. 96, pp. 557-569, 2005.
[37]G.-H. Yang, F. Mun, and G. Kim, "Direct electrospinning writing for producing 3D hybrid constructs consisting of microfibers and macro-struts for tissue engineering," Chemical Engineering Journal, vol. 288, pp. 648-658, 2016.
[38]S. Mohanty, K. Sanger, A. Heiskanen, J. Trifol, P. Szabo, M. Dufva, et al., "Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching," Materials Science and Engineering: C, vol. 61, pp. 180-189, 2016.
[39]H. J. Chung and T. G. Park, "Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering," Advanced drug delivery reviews, vol. 59, pp. 249-262, 2007.
[40]T. Nemoto, J. Takagi, and M. Ohshima, "Nanocellular foams—cell structure difference between immiscible and miscible PEEK/PEI polymer blends," Polymer Engineering & Science, vol. 50, pp. 2408-2416, 2010.
[41]H. Karkhanechi, S. Rajabzadeh, E. Di Nicolò, H. Usuda, A. R. Shaikh, and H. Matsuyama, "Preparation and characterization of ECTFE hollow fiber membranes via thermally induced phase separation (TIPS)," Polymer, vol. 97, pp. 515-524, 2016.
[42]S.-i. Sawada, C. Ursino, F. Galiano, S. Simone, E. Drioli, and A. Figoli, "Effect of citrate-based non-toxic solvents on poly (vinylidene fluoride) membrane preparation via thermally induced phase separation," Journal of Membrane Science, vol. 493, pp. 232-242, 2015.
[43]H. Ko, J. S. Lee, C.-H. Jung, J.-H. Choi, O.-S. Kwon, and K. Shin, "Actuation of Digital Micro Drops by Electrowetting on Open Microfluidic Chips Fabricated in Photolithography," Journal of nanoscience and nanotechnology, vol. 14, pp. 5894-5897, 2014.
[44]S. Queste, R. Salut, S. Clatot, J.-Y. Rauch, and C. G. K. Malek, "Manufacture of microfluidic glass chips by deep plasma etching, femtosecond laser ablation, and anodic bonding," Microsystem Technologies, vol. 16, pp. 1485-1493, 2010.
[45]L. Zhang, W. Wang, X.-J. Ju, R. Xie, Z. Liu, and L.-Y. Chu, "Fabrication of glass-based microfluidic devices with dry film photoresists as pattern transfer masks for wet etching," RSC Advances, vol. 5, pp. 5638-5646, 2015.
[46]C. Pan, K. Chen, B. Liu, L. Ren, J. Wang, Q. Hu, et al., "Fabrication of micro-texture channel on glass by laser-induced plasma-assisted ablation and chemical corrosion for microfluidic devices," Journal of Materials Processing Technology, vol. 240, pp. 314-323, 2017.
[47]D. Nieto, T. Delgado, and M. T. Flores-Arias, "Fabrication of microchannels on soda-lime glass substrates with a Nd: YVO 4 laser," Optics and Lasers in Engineering, vol. 63, pp. 11-18, 2014.
[48]N. Bhattacharjee, A. Urrios, S. Kang, and A. Folch, "The upcoming 3D-printing revolution in microfluidics," Lab on a Chip, vol. 16, pp. 1720-1742, 2016.
[49]H. Becker and L. E. Locascio, "Polymer microfluidic devices," Talanta, vol. 56, pp. 267-287, 2002.
[50]G. Scotti, S. M. Nilsson, M. Haapala, P. Pöhö, G. B. af Gennäs, J. Yli-Kauhaluoma, et al., "A miniaturised 3D printed polypropylene reactor for online reaction analysis by mass spectrometry," Reaction Chemistry & Engineering, 2017.
[51]P. J. Kitson, M. H. Rosnes, V. Sans, V. Dragone, and L. Cronin, "Configurable 3D-Printed millifluidic and microfluidic ‘lab on a chip’reactionware devices," Lab on a Chip, vol. 12, pp. 3267-3271, 2012.
[52]"http://products.narishige-group.com/group1/EG-401/pipette/english.html."
[53]VICTREX, "VICTREX PEEK 高性能聚合物材料加工指南."
[54]M. Vaezi and S. Yang, "Extrusion-based additive manufacturing of PEEK for biomedical applications," Virtual and Physical Prototyping, vol. 10, pp. 123-135, 2015.
[55]VICTREX, "VICTREX PEEK 材料特性手冊."
[56]T. W. Womer, "Basic screw geometry," Society of Plastics Engineers Inc., ANTEC Orlando, Florida, USA, 2000.
[57]J. P. Holman, Heat transfer: McGraw-Hill, 2010.
[58]M. Yuan, J. A. Galloway, R. J. Hoffman, and S. Bhatt, "Influence of molecular weight on rheological, thermal, and mechanical properties of PEEK," Polymer Engineering & Science, vol. 51, pp. 94-102, 2011.
[59]J. C. Riddick, M. A. Haile, R. Von Wahlde, D. P. Cole, O. Bamiduro, and T. E. Johnson, "Fractographic analysis of tensile failure of acrylonitrile-butadiene-styrene fabricated by fused deposition modeling," Additive Manufacturing, vol. 11, pp. 49-59, 2016.
[60]W. Wu, P. Geng, G. Li, D. Zhao, H. Zhang, and J. Zhao, "Influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK and a comparative mechanical study between PEEK and ABS," Materials, vol. 8, pp. 5834-5846, 2015.
[61]C. Lu, L. J. Lee, and Y. J. Juang, "Packaging of microfluidic chips via interstitial bonding technique," Electrophoresis, vol. 29, pp. 1407-1414, 2008.
[62]陳怡婷, "整合製備相轉移材料微膠囊之同心毛細管微流道系統開發研究," 碩士學位論文,國立臺灣大學,臺灣, 2015.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top